PathFinderKR's picture
Update README.md
1550fc2 verified
|
raw
history blame
10 kB
metadata
language:
  - ko
  - en
license: llama3
library_name: transformers
tags:
  - llama
  - llama-3
datasets:
  - MarkrAI/KoCommercial-Dataset

Waktaverse-Llama-3-KO-8B-Instruct Model Card

Model Details

image/webp Waktaverse-Llama-3-KO-8B-Instruct is a Korean language model developed by Waktaverse AI team. This large language model is a specialized version of the Meta-Llama-3-8B-Instruct, tailored for Korean natural language processing tasks. It is designed to handle a variety of complex instructions and generate coherent, contextually appropriate responses.

Model Sources

  • Repository: GitHub
  • Paper : [More Information Needed]

Uses

Direct Use

The model can be utilized directly for tasks such as text completion, summarization, and question answering without any fine-tuning.

Out-of-Scope Use

This model is not intended for use in scenarios that involve high-stakes decision-making including medical, legal, or safety-critical areas due to the potential risks of relying on automated decision-making. Moreover, any attempt to deploy the model in a manner that infringes upon privacy rights or facilitates biased decision-making is strongly discouraged.

Bias, Risks, and Limitations

While Waktaverse Llama 3 is a robust model, it shares common limitations associated with machine learning models including potential biases in training data, vulnerability to adversarial attacks, and unpredictable behavior under edge cases. There is also a risk of cultural and contextual misunderstanding, particularly when the model is applied to languages and contexts it was not specifically trained on.

How to Get Started with the Model

You can run conversational inference using the Transformers Auto classes. We highly recommend that you add Korean system prompt for better output. Adjust the hyperparameters as you need.

Example Usage

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = (
    "cuda:0" if torch.cuda.is_available() else # Nvidia GPU
    "mps" if torch.backends.mps.is_available() else # Apple Silicon GPU
    "cpu"
)

model_id = "PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map=device,
)

################################################################################
# Generation parameters
################################################################################
num_return_sequences=1
max_new_tokens=1024
temperature=0.9
top_k=0 # not recommended
top_p=0.9
repetition_penalty=1.1

def generate_response(system ,user):
    messages = [
        {"role": "system", "content": system},
        {"role": "user", "content": user}
    ]
    prompt = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=False
    )
    
    input_ids = tokenizer.encode(
        prompt,
        add_special_tokens=False,
        return_tensors="pt"
    ).to(device)
    
    outputs = model.generate(
        input_ids=input_ids,
        pad_token_id=tokenizer.eos_token_id,
        num_return_sequences=num_return_sequences,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=repetition_penalty
    )
    
    return tokenizer.decode(outputs[0], skip_special_tokens=False)

system_prompt = "λ‹€μŒ μ§€μ‹œμ‚¬ν•­μ— λŒ€ν•œ 응닡을 μž‘μ„±ν•΄μ£Όμ„Έμš”."
user_prompt = "ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ— λŒ€ν•΄ μ„€λͺ…ν•΄μ£Όμ„Έμš”."
response = generate_response(system_prompt, user_prompt)
print(response)

Example Output

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

λ‹€μŒ μ§€μ‹œμ‚¬ν•­μ— λŒ€ν•œ 응닡을 μž‘μ„±ν•΄μ£Όμ„Έμš”.<|eot_id|><|start_header_id|>user<|end_header_id|>

ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ— λŒ€ν•΄ μ„€λͺ…ν•΄μ£Όμ„Έμš”.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ 0κ³Ό 1둜 μ‹œμž‘ν•˜λ©°, 각 항이 이전 두 ν•­μ˜ ν•©μœΌλ‘œ κ³„μ‚°λ˜λŠ” μˆ˜μ—΄μž…λ‹ˆλ‹€. 이 μˆ˜μ—΄μ—λŠ” λ¬΄ν•œνžˆ λ§Žμ€ μˆ«μžκ°€ ν¬ν•¨λ˜μ–΄ 있으며, 첫 번째 λͺ‡ 개의 항은 λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 985, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,...

ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ μˆ˜ν•™μ  ꡬ쑰와 μž¬κ·€ 관계λ₯Ό 가지고 μžˆμŠ΅λ‹ˆλ‹€. 예λ₯Ό λ“€μ–΄, ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ˜ n번째 항은 (n-1)λ²ˆμ§Έμ™€ (n-2)번째 ν•­μ˜ ν•©μž…λ‹ˆλ‹€.

ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ μ—¬λŸ¬ λΆ„μ•Όμ—μ„œ μ‚¬μš©λ©λ‹ˆλ‹€. 예λ₯Ό λ“€μ–΄, ν™”νμ˜ 배치 λ¬Έμ œμ—μ„œλŠ” ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ΄ μ‚¬μš©λ  수 μžˆμŠ΅λ‹ˆλ‹€. λ˜ν•œ, κΈ°ν•˜ν•™μ—μ„œ ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ 점의 배열에 μ‚¬μš©λ  수 μžˆμŠ΅λ‹ˆλ‹€.

ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ μˆ˜ν•™μž λ ˆμ˜¨μ•„λ₯΄λ„ ν”Όλ³΄λ‚˜μΉ˜μ˜ 이름을 λ”°μ„œ λͺ…λͺ…λ˜μ—ˆμŠ΅λ‹ˆλ‹€. κ·ΈλŠ” 이 μˆ˜μ—΄μ„ 처음 λ°œκ²¬ν•˜κ³  κΈ°λ‘ν–ˆμŠ΅λ‹ˆλ‹€. ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ μœ λŸ½μ—μ„œ 인기λ₯Ό λŒμ—ˆμœΌλ©°, λ‹€λ₯Έ λ¬Έν™”μ—μ„œλ„ λ…νŠΉν•œ ν˜•νƒœλ‘œ λ‚˜νƒ€λ‚©λ‹ˆλ‹€.

ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ 컴퓨터 ν”„λ‘œκ·Έλž¨κ³Ό μ•Œκ³ λ¦¬μ¦˜μ—λ„ 적용될 수 μžˆμŠ΅λ‹ˆλ‹€. 예λ₯Ό λ“€μ–΄, ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ„ κ³„μ‚°ν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜μ΄ μžˆμŠ΅λ‹ˆλ‹€. μ΄λŸ¬ν•œ μ•Œκ³ λ¦¬μ¦˜μ€ ν˜„μž¬κΉŒμ§€ 맀우 효율적이며, λŒ€κ·œλͺ¨ 계산에 μ‚¬μš©λ©λ‹ˆλ‹€. ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ μˆ˜ν•™μ  ꡬ쑰와 μž¬κ·€ 관계λ₯Ό 가지고 있기 λ•Œλ¬Έμ— ν”„λ‘œκ·Έλž˜λ° μ–Έμ–΄μ—μ„œλ„ 자주 μ‚¬μš©λ©λ‹ˆλ‹€.

μš”μ•½ν•˜λ©΄, ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ μˆ˜ν•™μ  ꡬ쑰와 μž¬κ·€ 관계λ₯Ό 가진 μˆ˜μ—΄λ‘œ, λ‹€μ–‘ν•œ λΆ„μ•Όμ—μ„œ μ‚¬μš©λ˜κ³  μžˆμŠ΅λ‹ˆλ‹€. 이 μˆ˜μ—΄μ€ 컴퓨터 ν”„λ‘œκ·Έλž¨κ³Ό μ•Œκ³ λ¦¬μ¦˜μ—λ„ 적용될 수 있으며, λŒ€κ·œλͺ¨ 계산에 μ‚¬μš©λ©λ‹ˆλ‹€. ν”Όλ³΄λ‚˜μΉ˜ μˆ˜μ—΄μ€ μˆ˜ν•™μž λ ˆμ˜¨μ•„λ₯΄λ„ ν”Όλ³΄λ‚˜μΉ˜μ˜ 이름을 λ”°μ„œ λͺ…λͺ…λ˜μ—ˆμœΌλ©°, 그의 μ—…μ μœΌλ‘œ 유λͺ…ν•©λ‹ˆλ‹€.<|eot_id|>

Training Details

Training Data

The model is trained on the MarkrAI/KoCommercial-Dataset, which consists of various commercial texts in Korean.

Training Procedure

The model training used LoRA for computational efficiency. 0.04 billion parameters(0.51% of total parameters) were trained.

Training Hyperparameters

################################################################################
# bitsandbytes parameters
################################################################################
load_in_4bit=True
bnb_4bit_compute_dtype=torch_dtype
bnb_4bit_quant_type="nf4"
bnb_4bit_use_double_quant=False

################################################################################
# LoRA parameters
################################################################################
task_type="CAUSAL_LM"
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
r=16
lora_alpha=32
lora_dropout=0.1
bias="none"

################################################################################
# TrainingArguments parameters
################################################################################
num_train_epochs=2
per_device_train_batch_size=1
gradient_accumulation_steps=1
gradient_checkpointing=True
learning_rate=2e-5
lr_scheduler_type="cosine"
warmup_ratio=0.1
optim = "adamw_torch"
weight_decay=0.01

################################################################################
# SFT parameters
################################################################################
max_seq_length=1024
packing=True

Evaluation

Metrics

  • Ko-HellaSwag:
  • Ko-MMLU:
  • Ko-Arc:
  • Ko-Truthful QA:
  • Ko-CommonGen V2:

Results

Benchmark Waktaverse Llama 3 8B Llama 3 8B
Ko-HellaSwag: 0 0
Ko-MMLU: 0 0
Ko-Arc: 0 0
Ko-Truthful QA: 0 0
Ko-CommonGen V2: 0 0

Technical Specifications

Compute Infrastructure

Hardware

  • GPU: NVIDIA GeForce RTX 4080 SUPER

Software

  • Operating System: Linux
  • Deep Learning Framework: Hugging Face Transformers, PyTorch

Training Details

  • Training time: 32 hours
  • VRAM usage: 12.8 GB
  • GPU power usage: 300 W

Citation

Waktaverse-Llama-3

@article{waktaversellama3modelcard,
  title={Waktaverse Llama 3 Model Card},
  author={AI@Waktaverse},
  year={2024},
  url = {https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct}

Llama-3

@article{llama3modelcard,
  title={Llama 3 Model Card},
  author={AI@Meta},
  year={2024},
  url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}

Ko-Llama3-Luxia-8B

@article{kollama3luxiamodelcard,
  title={Ko Llama 3 Luxia Model Card},
  author={AILabs@Saltux},
  year={2024},
  url={https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B/blob/main/README.md}
}

Model Card Authors

[More Information Needed]

Model Card Contact

[More Information Needed]