PathFinderKR
commited on
Commit
•
1550fc2
1
Parent(s):
7c7ce10
Update README.md
Browse files
README.md
CHANGED
@@ -25,6 +25,7 @@ It is designed to handle a variety of complex instructions and generate coherent
|
|
25 |
- **Language(s) (NLP):** Korean, English
|
26 |
- **License:** [Llama3](https://llama.meta.com/llama3/license)
|
27 |
- **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
|
|
28 |
|
29 |
## Model Sources
|
30 |
|
@@ -159,7 +160,7 @@ The model is trained on the [MarkrAI/KoCommercial-Dataset](https://huggingface.c
|
|
159 |
|
160 |
### Training Procedure
|
161 |
|
162 |
-
The model training used LoRA for computational efficiency. 0.
|
163 |
|
164 |
#### Training Hyperparameters
|
165 |
|
@@ -177,17 +178,17 @@ bnb_4bit_use_double_quant=False
|
|
177 |
################################################################################
|
178 |
task_type="CAUSAL_LM"
|
179 |
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
180 |
-
r=
|
181 |
-
lora_alpha=
|
182 |
-
lora_dropout=0.
|
183 |
bias="none"
|
184 |
|
185 |
################################################################################
|
186 |
# TrainingArguments parameters
|
187 |
################################################################################
|
188 |
-
num_train_epochs=
|
189 |
per_device_train_batch_size=1
|
190 |
-
gradient_accumulation_steps=
|
191 |
gradient_checkpointing=True
|
192 |
learning_rate=2e-5
|
193 |
lr_scheduler_type="cosine"
|
@@ -208,17 +209,6 @@ packing=True
|
|
208 |
|
209 |
### Metrics
|
210 |
|
211 |
-
#### English
|
212 |
-
|
213 |
-
- **AI2 Reasoning Challenge (25-shot):** a set of grade-school science questions.
|
214 |
-
- **HellaSwag (10-shot):** a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
|
215 |
-
- **MMLU (5-shot):** a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
216 |
-
- **TruthfulQA (0-shot):** a test to measure a model's propensity to reproduce falsehoods commonly found online. Note: TruthfulQA is technically a 6-shot task in the Harness because each example is prepended with 6 Q/A pairs, even in the 0-shot setting.
|
217 |
-
- **Winogrande (5-shot):** an adversarial and difficult Winograd benchmark at scale, for commonsense reasoning.
|
218 |
-
- **GSM8k (5-shot):** diverse grade school math word problems to measure a model's ability to solve multi-step mathematical reasoning problems.
|
219 |
-
|
220 |
-
#### Korean
|
221 |
-
|
222 |
- **Ko-HellaSwag:**
|
223 |
- **Ko-MMLU:**
|
224 |
- **Ko-Arc:**
|
@@ -227,68 +217,6 @@ packing=True
|
|
227 |
|
228 |
### Results
|
229 |
|
230 |
-
#### English
|
231 |
-
|
232 |
-
<table>
|
233 |
-
<tr>
|
234 |
-
<td><strong>Benchmark</strong>
|
235 |
-
</td>
|
236 |
-
<td><strong>Waktaverse Llama 3 8B</strong>
|
237 |
-
</td>
|
238 |
-
<td><strong>Llama 3 8B</strong>
|
239 |
-
</td>
|
240 |
-
</tr>
|
241 |
-
<tr>
|
242 |
-
<td>Average
|
243 |
-
</td>
|
244 |
-
<td>66.77
|
245 |
-
</td>
|
246 |
-
<td>66.87
|
247 |
-
</td>
|
248 |
-
</tr>
|
249 |
-
<tr>
|
250 |
-
<td>ARC
|
251 |
-
</td>
|
252 |
-
<td>60.32
|
253 |
-
</td>
|
254 |
-
<td>60.75
|
255 |
-
</td>
|
256 |
-
</tr>
|
257 |
-
<tr>
|
258 |
-
<td>HellaSwag
|
259 |
-
</td>
|
260 |
-
<td>78.55
|
261 |
-
</td>
|
262 |
-
<td>78.55
|
263 |
-
</td>
|
264 |
-
</tr>
|
265 |
-
<tr>
|
266 |
-
<td>MMLU
|
267 |
-
</td>
|
268 |
-
<td>67.9
|
269 |
-
</td>
|
270 |
-
<td>67.07
|
271 |
-
</td>
|
272 |
-
</tr>
|
273 |
-
<tr>
|
274 |
-
<td>Winograde
|
275 |
-
</td>
|
276 |
-
<td>74.27
|
277 |
-
</td>
|
278 |
-
<td>74.51
|
279 |
-
</td>
|
280 |
-
<tr>
|
281 |
-
<td>GSM8K
|
282 |
-
</td>
|
283 |
-
<td>70.36
|
284 |
-
</td>
|
285 |
-
<td>68.69
|
286 |
-
</td>
|
287 |
-
</tr>
|
288 |
-
</table>
|
289 |
-
|
290 |
-
#### Korean
|
291 |
-
|
292 |
<table>
|
293 |
<tr>
|
294 |
<td><strong>Benchmark</strong>
|
@@ -365,7 +293,11 @@ packing=True
|
|
365 |
**Waktaverse-Llama-3**
|
366 |
|
367 |
```
|
368 |
-
|
|
|
|
|
|
|
|
|
369 |
```
|
370 |
|
371 |
**Llama-3**
|
@@ -379,6 +311,16 @@ TBD
|
|
379 |
}
|
380 |
```
|
381 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
|
384 |
## Model Card Authors
|
|
|
25 |
- **Language(s) (NLP):** Korean, English
|
26 |
- **License:** [Llama3](https://llama.meta.com/llama3/license)
|
27 |
- **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
28 |
+
- **Tokenizer Soucrce:** [saltlux/Ko-Llama3-Luxia-8B](https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B)
|
29 |
|
30 |
## Model Sources
|
31 |
|
|
|
160 |
|
161 |
### Training Procedure
|
162 |
|
163 |
+
The model training used LoRA for computational efficiency. 0.04 billion parameters(0.51% of total parameters) were trained.
|
164 |
|
165 |
#### Training Hyperparameters
|
166 |
|
|
|
178 |
################################################################################
|
179 |
task_type="CAUSAL_LM"
|
180 |
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
181 |
+
r=16
|
182 |
+
lora_alpha=32
|
183 |
+
lora_dropout=0.1
|
184 |
bias="none"
|
185 |
|
186 |
################################################################################
|
187 |
# TrainingArguments parameters
|
188 |
################################################################################
|
189 |
+
num_train_epochs=2
|
190 |
per_device_train_batch_size=1
|
191 |
+
gradient_accumulation_steps=1
|
192 |
gradient_checkpointing=True
|
193 |
learning_rate=2e-5
|
194 |
lr_scheduler_type="cosine"
|
|
|
209 |
|
210 |
### Metrics
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
- **Ko-HellaSwag:**
|
213 |
- **Ko-MMLU:**
|
214 |
- **Ko-Arc:**
|
|
|
217 |
|
218 |
### Results
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
<table>
|
221 |
<tr>
|
222 |
<td><strong>Benchmark</strong>
|
|
|
293 |
**Waktaverse-Llama-3**
|
294 |
|
295 |
```
|
296 |
+
@article{waktaversellama3modelcard,
|
297 |
+
title={Waktaverse Llama 3 Model Card},
|
298 |
+
author={AI@Waktaverse},
|
299 |
+
year={2024},
|
300 |
+
url = {https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct}
|
301 |
```
|
302 |
|
303 |
**Llama-3**
|
|
|
311 |
}
|
312 |
```
|
313 |
|
314 |
+
**Ko-Llama3-Luxia-8B**
|
315 |
+
```
|
316 |
+
@article{kollama3luxiamodelcard,
|
317 |
+
title={Ko Llama 3 Luxia Model Card},
|
318 |
+
author={AILabs@Saltux},
|
319 |
+
year={2024},
|
320 |
+
url={https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B/blob/main/README.md}
|
321 |
+
}
|
322 |
+
```
|
323 |
+
|
324 |
|
325 |
|
326 |
## Model Card Authors
|