--- base_model: instructlab/merlinite-7b-lab library_name: peft license: apache-2.0 tags: - trl - sft model-index: - name: merlinite-sql-7b-thai-instructlab results: [] language: - th pipeline_tag: text-generation --- # merlinite-sql-7b-thai-instructlab This model is a fine-tuned version of [instructlab/merlinite-7b-lab](https://huggingface.co/instructlab/merlinite-7b-lab) on an unknown dataset. ## Model description More information needed ## How to Use installing dependencies ```bash !pip install -qU transformers accelerate ``` To implement the model ```python from transformers import AutoTokenizer import transformers import torch question = "คะแนนความสามารถทางการเงินสูงสุดสำหรับลูกค้าในแอฟริกาในปี 2022 คือเท่าใด \nHere is a Table: CREATE TABLE financial_capability (id INT, customer_name VARCHAR(50), region VARCHAR(50), score INT, year INT); INSERT INTO financial_capability (id, customer_name, region, score, year) VALUES (1, 'Thabo', 'Africa', 9, 2022), (2, 'Amina', 'Africa', 8, 2022);" model = "Pavarissy/merlinite-sql-7b-thai-instructlab" messages = [{"role": "user", "content": f"{question}"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) # this is model generation part outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1