--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan-t5-small-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 43.1157 --- # flan-t5-small-samsum This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6670 - Rouge1: 43.1157 - Rouge2: 18.7389 - Rougel: 35.4615 - Rougelsum: 39.2648 - Gen Len: 16.9109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8863 | 0.22 | 100 | 1.7049 | 42.1055 | 18.0331 | 34.7517 | 38.3767 | 16.5788 | | 1.8463 | 0.43 | 200 | 1.6947 | 42.4427 | 18.2735 | 34.9451 | 38.8469 | 17.3614 | | 1.8548 | 0.65 | 300 | 1.6792 | 42.6324 | 18.5506 | 35.1724 | 38.8717 | 17.1514 | | 1.8358 | 0.87 | 400 | 1.6772 | 42.2127 | 18.2031 | 34.8749 | 38.3969 | 16.5873 | | 1.8129 | 1.08 | 500 | 1.6729 | 42.6431 | 18.6961 | 35.4006 | 38.8667 | 16.9170 | | 1.8068 | 1.3 | 600 | 1.6709 | 42.5591 | 18.3093 | 35.1272 | 38.6379 | 16.9451 | | 1.7973 | 1.52 | 700 | 1.6687 | 42.8925 | 18.6265 | 35.292 | 38.9546 | 16.7546 | | 1.7979 | 1.74 | 800 | 1.6668 | 42.9455 | 18.7294 | 35.4018 | 39.099 | 16.8791 | | 1.7899 | 1.95 | 900 | 1.6670 | 43.1157 | 18.7389 | 35.4615 | 39.2648 | 16.9109 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0