--- library_name: transformers language: - yue license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_15_0 - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Small Canontese X v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_15_0 config: zh-HK split: None args: 'config: zh-HK, split: test' metrics: - name: Wer type: wer value: 59.33048433048433 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 15.0 type: mozilla-foundation/common_voice_16_1 metrics: - name: Wer type: wer value: 59.33048433048433 --- # Whisper Small Canontese X v2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 and the Common Voice 15.0 datasets. It achieves the following results on the evaluation set: - Loss: 0.2720 - Wer: 59.3305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2939 | 0.7918 | 1000 | 0.3060 | 65.9188 | | 0.1498 | 1.5835 | 2000 | 0.2803 | 61.6809 | | 0.0662 | 2.3753 | 3000 | 0.2720 | 59.3305 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1