PerRing commited on
Commit
1488efa
1 Parent(s): 5ece9de

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -178
README.md CHANGED
@@ -1,201 +1,88 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
 
6
- # Model Card for Model ID
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
9
 
 
 
 
 
 
 
 
10
 
 
 
11
 
12
- ## Model Details
 
 
 
 
 
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
 
 
 
 
 
201
 
 
 
 
1
+ this repo is huggingface version of liuhaotian/llava-v1.6-34b
2
+ # Issue
3
+ Despite the completion of generation, '\n' is repeatedly generated, so be mindful of adjusting the 'max_length'.
 
4
 
5
+ ```python
6
+ import requests
7
+ from PIL import Image
8
+ import torch
9
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
10
 
11
+ model_id = "PerRing/llava-v1.6-34b-hf"
12
+ model = LlavaForConditionalGeneration.from_pretrained(
13
+ model_id,
14
+ torch_dtype=torch.float16,
15
+ low_cpu_mem_usage=True,
16
+ ).to(0)
17
+ processor = AutoProcessor.from_pretrained(model_id)
18
 
19
+ Q='explain about this image'
20
+ prompt = f"""<|im_start|>system
21
+ Answer the questions.<|im_end|><|im_start|>user
22
+ <image>
23
+ {Q}<|im_end|><|im_start|>assistant
24
+ """
25
+ image_file = "https://images.pexels.com/photos/757889/pexels-photo-757889.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2"
26
 
27
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
28
+ inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
29
 
30
+ output = model.generate(**inputs, max_length=256)
31
+ print(processor.decode(output[0], skip_special_tokens=True))
32
+ ```
33
+ ## result
34
+ ```output
35
+ <|im_start|> system
36
+ Answer the questions.<|im_start|> user
37
+
38
+ explain about this image<|im_start|> assistant
39
+ The image shows a bouquet of purple flowers arranged in a clear glass vase. The vase is placed on a balcony railing. The balcony railing is made of metal and has a black color. The flowers are purple in color. The bouquet of flowers is placed in the clear glass vase. The vase is made of clear glass. The clear glass vase is placed on the balcony railing. The balcony railing is made of metal and has a black color. The bouquet of purple flowers is placed in the clear glass vase. The vase is made of clear glass.
40
 
 
41
 
42
+ ```
43
 
 
44
 
 
 
 
 
 
 
 
45
 
46
+ # Original(liuhaotian/llava-v1.6-34b) README.md
47
 
 
48
 
49
+ <br>
50
+ <br>
 
51
 
52
+ # LLaVA Model Card
53
 
54
+ ## Model details
55
 
56
+ **Model type:**
57
+ LLaVA is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data.
58
+ It is an auto-regressive language model, based on the transformer architecture.
59
+ Base LLM: [NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)
60
 
61
+ **Model date:**
62
+ LLaVA-v1.6-34B was trained in December 2023.
63
 
64
+ **Paper or resources for more information:**
65
+ https://llava-vl.github.io/
66
 
67
+ ## License
68
+ [NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) license.
69
 
70
+ **Where to send questions or comments about the model:**
71
+ https://github.com/haotian-liu/LLaVA/issues
72
 
73
+ ## Intended use
74
+ **Primary intended uses:**
75
+ The primary use of LLaVA is research on large multimodal models and chatbots.
76
 
77
+ **Primary intended users:**
78
+ The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ ## Training dataset
81
+ - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
82
+ - 158K GPT-generated multimodal instruction-following data.
83
+ - 500K academic-task-oriented VQA data mixture.
84
+ - 50K GPT-4V data mixture.
85
+ - 40K ShareGPT data.
86
 
87
+ ## Evaluation dataset
88
+ A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.