PeterDerLustige
commited on
Commit
•
249bc25
1
Parent(s):
204cd5d
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.30 +/- 0.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:071801a24b82a3ed0a7e827d59b4851070733cfc6d82e15af20d105e0f7b315d
|
3 |
+
size 108131
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe1bb181c10>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fe1bb17e5a0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1500000,
|
45 |
+
"_total_timesteps": 1500000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675522544963373175,
|
50 |
+
"learning_rate": 0.0001,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeaa/PiIj5Tkiygs/eaa/PiIj5Tkiygs/eaa/PiIj5Tkiygs/eaa/PiIj5Tkiygs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARvj2Po3EdT6wiAK/z6imPgNOpb5aAXE/Ne6dP3qChz9wVLC/H2FvP+PLEL7wqdI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB5pr8+IiPlOSLKCz/PCkm82cEyupTrmrh5pr8+IiPlOSLKCz/PCkm82cEyupTrmrh5pr8+IiPlOSLKCz/PCkm82cEyupTrmrh5pr8+IiPlOSLKCz/PCkm82cEyupTrmriUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[3.7431696e-01 4.3704460e-04 5.4605305e-01]\n [3.7431696e-01 4.3704460e-04 5.4605305e-01]\n [3.7431696e-01 4.3704460e-04 5.4605305e-01]\n [3.7431696e-01 4.3704460e-04 5.4605305e-01]]",
|
60 |
+
"desired_goal": "[[ 0.48236293 0.2400076 -0.5098982 ]\n [ 0.32550666 -0.3228608 0.9414269 ]\n [ 1.233832 1.0586693 -1.3775768 ]\n [ 0.9350757 -0.14140277 1.6458111 ]]",
|
61 |
+
"observation": "[[ 3.7431696e-01 4.3704460e-04 5.4605305e-01 -1.2270643e-02\n -6.8190467e-04 -7.3871721e-05]\n [ 3.7431696e-01 4.3704460e-04 5.4605305e-01 -1.2270643e-02\n -6.8190467e-04 -7.3871721e-05]\n [ 3.7431696e-01 4.3704460e-04 5.4605305e-01 -1.2270643e-02\n -6.8190467e-04 -7.3871721e-05]\n [ 3.7431696e-01 4.3704460e-04 5.4605305e-01 -1.2270643e-02\n -6.8190467e-04 -7.3871721e-05]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAadoKPk8oFr3nnow+nyc6vSEwhz3XLh49kJXAPWfUe7zu1no+a+DhvcYAqbzMq3k+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.1355988 -0.03665954 0.27464983]\n [-0.04544794 0.06600977 0.03861889]\n [ 0.09403527 -0.01537046 0.24496052]\n [-0.11029132 -0.02063025 0.24381942]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIduPdkbFa5L+UhpRSlIwBbJRLMowBdJRHQKzBd5GBnSR1fZQoaAZoCWgPQwjJWkOpvYjov5SGlFKUaBVLMmgWR0CswTEF4cFRdX2UKGgGaAloD0MIUDQPYJFf3b+UhpRSlGgVSzJoFkdArMD110T103V9lChoBmgJaA9DCAwBwLFnz9m/lIaUUpRoFUsyaBZHQKzAunuRcNZ1fZQoaAZoCWgPQwjH8UOlEbPhv5SGlFKUaBVLMmgWR0CswpGbTc7AdX2UKGgGaAloD0MI+fiE7LyN4L+UhpRSlGgVSzJoFkdArMJKtT1kD3V9lChoBmgJaA9DCDBinwCKkd2/lIaUUpRoFUsyaBZHQKzCD1mJ3xF1fZQoaAZoCWgPQwhegH106srdv5SGlFKUaBVLMmgWR0CswdPmYBvKdX2UKGgGaAloD0MIDQBV3LjF7L+UhpRSlGgVSzJoFkdArMOng9/z8XV9lChoBmgJaA9DCITwaOOItd6/lIaUUpRoFUsyaBZHQKzDYKhtcfN1fZQoaAZoCWgPQwiQaW0a22vcv5SGlFKUaBVLMmgWR0CswyWDHwPRdX2UKGgGaAloD0MIKNU+HY+Z5r+UhpRSlGgVSzJoFkdArMLqAxzq8nV9lChoBmgJaA9DCCS2uwfovuG/lIaUUpRoFUsyaBZHQKzEwl1KXfJ1fZQoaAZoCWgPQwh/wtmtZTLWv5SGlFKUaBVLMmgWR0CsxHuearmydX2UKGgGaAloD0MIu0OKARJN3L+UhpRSlGgVSzJoFkdArMRAfGMn7nV9lChoBmgJaA9DCLggW5avS+C/lIaUUpRoFUsyaBZHQKzEBNVR1ox1fZQoaAZoCWgPQwgqj26ERUXYv5SGlFKUaBVLMmgWR0CsxdMVUModdX2UKGgGaAloD0MIZr6DnziA3L+UhpRSlGgVSzJoFkdArMWMN2C/XXV9lChoBmgJaA9DCKZ+3lSkwtu/lIaUUpRoFUsyaBZHQKzFUPbwjMV1fZQoaAZoCWgPQwhw7NlzmZriv5SGlFKUaBVLMmgWR0CsxRVuzhP1dX2UKGgGaAloD0MIhzO/mgME4L+UhpRSlGgVSzJoFkdArMbuby6MBXV9lChoBmgJaA9DCFaeQNgpVt+/lIaUUpRoFUsyaBZHQKzGp3i704B1fZQoaAZoCWgPQwiFz9bBwd7av5SGlFKUaBVLMmgWR0CsxmxBNVR2dX2UKGgGaAloD0MIvALRkzIp47+UhpRSlGgVSzJoFkdArMYw77sOXnV9lChoBmgJaA9DCKlnQSjv4+C/lIaUUpRoFUsyaBZHQKzICClJpWV1fZQoaAZoCWgPQwiXV663zdTiv5SGlFKUaBVLMmgWR0Csx8FN+LFXdX2UKGgGaAloD0MIKEhsdw/Q2L+UhpRSlGgVSzJoFkdArMeGHFglW3V9lChoBmgJaA9DCNEHy9jQzd6/lIaUUpRoFUsyaBZHQKzHSqMFUyZ1fZQoaAZoCWgPQwjNj7+0qM/kv5SGlFKUaBVLMmgWR0CsyTAxagVXdX2UKGgGaAloD0MIGHsvvmiP27+UhpRSlGgVSzJoFkdArMjpVENOM3V9lChoBmgJaA9DCOoJSzygbOS/lIaUUpRoFUsyaBZHQKzIrq33HrB1fZQoaAZoCWgPQwh5O8JpwYvnv5SGlFKUaBVLMmgWR0CsyHNaY/mldX2UKGgGaAloD0MIEojX9Qt24r+UhpRSlGgVSzJoFkdArMpGU8mrsHV9lChoBmgJaA9DCCbkg57Nqt6/lIaUUpRoFUsyaBZHQKzJ/2qT8pF1fZQoaAZoCWgPQwi/gjRj0XTdv5SGlFKUaBVLMmgWR0CsycRFqi48dX2UKGgGaAloD0MI/kXQmEnU5b+UhpRSlGgVSzJoFkdArMmI2l2vCHV9lChoBmgJaA9DCBWL3xRWKt2/lIaUUpRoFUsyaBZHQKzLYA8Swnp1fZQoaAZoCWgPQwg+d4L917nYv5SGlFKUaBVLMmgWR0CsyxkaMrEtdX2UKGgGaAloD0MI8MSsF0M537+UhpRSlGgVSzJoFkdArMrd/J/5L3V9lChoBmgJaA9DCJhPVgxXB+C/lIaUUpRoFUsyaBZHQKzKopGWldl1fZQoaAZoCWgPQwhAaD18mSjbv5SGlFKUaBVLMmgWR0CszJinxaxHdX2UKGgGaAloD0MI54nnbAGh4b+UhpRSlGgVSzJoFkdArMxRwS8J2XV9lChoBmgJaA9DCDl9PV+zXN+/lIaUUpRoFUsyaBZHQKzMFoW56MR1fZQoaAZoCWgPQwhzu5f75Kjjv5SGlFKUaBVLMmgWR0Csy9sSsbNsdX2UKGgGaAloD0MIODKP/MFA4r+UhpRSlGgVSzJoFkdArM2vb/Ot4nV9lChoBmgJaA9DCN9sc2N6Qui/lIaUUpRoFUsyaBZHQKzNaKw6hg51fZQoaAZoCWgPQwjumLoru+Djv5SGlFKUaBVLMmgWR0CszS1o6CDmdX2UKGgGaAloD0MI1ZXP8jy42r+UhpRSlGgVSzJoFkdArMzyBshxHXV9lChoBmgJaA9DCMK9Mm/Vdea/lIaUUpRoFUsyaBZHQKzOx/IbOu91fZQoaAZoCWgPQwisArUYPEzYv5SGlFKUaBVLMmgWR0CszoEB0ZFYdX2UKGgGaAloD0MIp+mzA66r5r+UhpRSlGgVSzJoFkdArM5FqQA+6nV9lChoBmgJaA9DCGR47GexFOG/lIaUUpRoFUsyaBZHQKzOCipNsWR1fZQoaAZoCWgPQwibO/pfrkXgv5SGlFKUaBVLMmgWR0Csz9hKcurZdX2UKGgGaAloD0MISrVPx2OG47+UhpRSlGgVSzJoFkdArM+Rh8Yyf3V9lChoBmgJaA9DCNl22hoRjOi/lIaUUpRoFUsyaBZHQKzPVjo6jnF1fZQoaAZoCWgPQwgIq7GEtTHsv5SGlFKUaBVLMmgWR0CszxqzqrzYdX2UKGgGaAloD0MI8X9HVKhu4b+UhpRSlGgVSzJoFkdArNDwAQxvenV9lChoBmgJaA9DCDTY1HlU/Nq/lIaUUpRoFUsyaBZHQKzQqQT238Z1fZQoaAZoCWgPQwgxCoLHt/flv5SGlFKUaBVLMmgWR0Cs0G3Q2MsIdX2UKGgGaAloD0MIzLVoAdpW2b+UhpRSlGgVSzJoFkdArNAyWiUPhHV9lChoBmgJaA9DCNBgU+dRceC/lIaUUpRoFUsyaBZHQKzSCr2g3991fZQoaAZoCWgPQwg26bZELrjiv5SGlFKUaBVLMmgWR0Cs0cQFcIJJdX2UKGgGaAloD0MIecpqup5o4b+UhpRSlGgVSzJoFkdArNGI0fozN3V9lChoBmgJaA9DCEs6ysFsguW/lIaUUpRoFUsyaBZHQKzRTVvMr3F1fZQoaAZoCWgPQwhTzaylgDTgv5SGlFKUaBVLMmgWR0Cs00SyMUAUdX2UKGgGaAloD0MI+P9xwoTR5L+UhpRSlGgVSzJoFkdArNL93hXKbXV9lChoBmgJaA9DCL2NzY5UX+C/lIaUUpRoFUsyaBZHQKzSwpvP1L91fZQoaAZoCWgPQwgc6+I2GkDlv5SGlFKUaBVLMmgWR0Cs0ofigkC4dX2UKGgGaAloD0MIKxa/KazU5r+UhpRSlGgVSzJoFkdArNRcBGQSz3V9lChoBmgJaA9DCPbU6qurAti/lIaUUpRoFUsyaBZHQKzUFRjSXt11fZQoaAZoCWgPQwifIoeIm9Plv5SGlFKUaBVLMmgWR0Cs09nOB19wdX2UKGgGaAloD0MINPRPcLEi4r+UhpRSlGgVSzJoFkdArNOeV9nbqXV9lChoBmgJaA9DCKOutfepKuO/lIaUUpRoFUsyaBZHQKzVe9L6DXh1fZQoaAZoCWgPQwi+S6lLxjHev5SGlFKUaBVLMmgWR0Cs1TVD0DlpdX2UKGgGaAloD0MIda+T+rK05r+UhpRSlGgVSzJoFkdArNT6RuCPIXV9lChoBmgJaA9DCOJ1/YLdsN+/lIaUUpRoFUsyaBZHQKzUvxHXmNl1fZQoaAZoCWgPQwgpIVhVL7/cv5SGlFKUaBVLMmgWR0Cs1qbKJVKgdX2UKGgGaAloD0MIOdOE7Sdj27+UhpRSlGgVSzJoFkdArNZf779AHHV9lChoBmgJaA9DCEnVdhN80+a/lIaUUpRoFUsyaBZHQKzWJKwpvxZ1fZQoaAZoCWgPQwh2w7ZFmQ3Wv5SGlFKUaBVLMmgWR0Cs1elF+d9VdX2UKGgGaAloD0MI6udNRSqM1r+UhpRSlGgVSzJoFkdArNfWGj9GZ3V9lChoBmgJaA9DCAWKWMSww96/lIaUUpRoFUsyaBZHQKzXj2M85jp1fZQoaAZoCWgPQwjFdYwrLo7nv5SGlFKUaBVLMmgWR0Cs11QsGxD9dX2UKGgGaAloD0MI290DdF9O5r+UhpRSlGgVSzJoFkdArNcZbILgGnV9lChoBmgJaA9DCNDRqpZ0lNu/lIaUUpRoFUsyaBZHQKzZA4iosI51fZQoaAZoCWgPQwglP+JXrOHiv5SGlFKUaBVLMmgWR0Cs2LzI3irDdX2UKGgGaAloD0MIoffGEACc4L+UhpRSlGgVSzJoFkdArNiBrYXfqHV9lChoBmgJaA9DCJ8dcF0xI+S/lIaUUpRoFUsyaBZHQKzYRjdYW+J1fZQoaAZoCWgPQwijPskdNpHfv5SGlFKUaBVLMmgWR0Cs2k7jDKoydX2UKGgGaAloD0MISbpm8s225r+UhpRSlGgVSzJoFkdArNoI4p+c6XV9lChoBmgJaA9DCEzjF15Jcue/lIaUUpRoFUsyaBZHQKzZzbfxc3V1fZQoaAZoCWgPQwhbXyS05dzgv5SGlFKUaBVLMmgWR0Cs2ZJOvdM1dX2UKGgGaAloD0MIKV5lbVM81b+UhpRSlGgVSzJoFkdArNt5GYrrgXV9lChoBmgJaA9DCKSJd4AnLeK/lIaUUpRoFUsyaBZHQKzbMmzjWCp1fZQoaAZoCWgPQwixv+yePCzav5SGlFKUaBVLMmgWR0Cs2vde6ZpjdX2UKGgGaAloD0MIo8nFGFjH4r+UhpRSlGgVSzJoFkdArNq8gGKQ73V9lChoBmgJaA9DCJBnl299WOC/lIaUUpRoFUsyaBZHQKzcjgb6xgR1fZQoaAZoCWgPQwgi3jr/dtnkv5SGlFKUaBVLMmgWR0Cs3EciGFi8dX2UKGgGaAloD0MIG55eKcsQ4r+UhpRSlGgVSzJoFkdArNwML+glGHV9lChoBmgJaA9DCN3pzhPPWeC/lIaUUpRoFUsyaBZHQKzb0XF98Z11ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 75000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f36f40f5e7bad44bd72d02912c4b4df1feb5d7cadad938bb0e25e488b4388f38
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a0e60478bca6114ae4048c65557ee163655554cb5fe59d15de7d1283db23833
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe1bb181c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe1bb17e5a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675522544963373175, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeaa/PiIj5Tkiygs/eaa/PiIj5Tkiygs/eaa/PiIj5Tkiygs/eaa/PiIj5Tkiygs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARvj2Po3EdT6wiAK/z6imPgNOpb5aAXE/Ne6dP3qChz9wVLC/H2FvP+PLEL7wqdI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB5pr8+IiPlOSLKCz/PCkm82cEyupTrmrh5pr8+IiPlOSLKCz/PCkm82cEyupTrmrh5pr8+IiPlOSLKCz/PCkm82cEyupTrmrh5pr8+IiPlOSLKCz/PCkm82cEyupTrmriUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[3.7431696e-01 4.3704460e-04 5.4605305e-01]\n [3.7431696e-01 4.3704460e-04 5.4605305e-01]\n [3.7431696e-01 4.3704460e-04 5.4605305e-01]\n [3.7431696e-01 4.3704460e-04 5.4605305e-01]]", "desired_goal": "[[ 0.48236293 0.2400076 -0.5098982 ]\n [ 0.32550666 -0.3228608 0.9414269 ]\n [ 1.233832 1.0586693 -1.3775768 ]\n [ 0.9350757 -0.14140277 1.6458111 ]]", "observation": "[[ 3.7431696e-01 4.3704460e-04 5.4605305e-01 -1.2270643e-02\n -6.8190467e-04 -7.3871721e-05]\n [ 3.7431696e-01 4.3704460e-04 5.4605305e-01 -1.2270643e-02\n -6.8190467e-04 -7.3871721e-05]\n [ 3.7431696e-01 4.3704460e-04 5.4605305e-01 -1.2270643e-02\n -6.8190467e-04 -7.3871721e-05]\n [ 3.7431696e-01 4.3704460e-04 5.4605305e-01 -1.2270643e-02\n -6.8190467e-04 -7.3871721e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAadoKPk8oFr3nnow+nyc6vSEwhz3XLh49kJXAPWfUe7zu1no+a+DhvcYAqbzMq3k+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1355988 -0.03665954 0.27464983]\n [-0.04544794 0.06600977 0.03861889]\n [ 0.09403527 -0.01537046 0.24496052]\n [-0.11029132 -0.02063025 0.24381942]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIduPdkbFa5L+UhpRSlIwBbJRLMowBdJRHQKzBd5GBnSR1fZQoaAZoCWgPQwjJWkOpvYjov5SGlFKUaBVLMmgWR0CswTEF4cFRdX2UKGgGaAloD0MIUDQPYJFf3b+UhpRSlGgVSzJoFkdArMD110T103V9lChoBmgJaA9DCAwBwLFnz9m/lIaUUpRoFUsyaBZHQKzAunuRcNZ1fZQoaAZoCWgPQwjH8UOlEbPhv5SGlFKUaBVLMmgWR0CswpGbTc7AdX2UKGgGaAloD0MI+fiE7LyN4L+UhpRSlGgVSzJoFkdArMJKtT1kD3V9lChoBmgJaA9DCDBinwCKkd2/lIaUUpRoFUsyaBZHQKzCD1mJ3xF1fZQoaAZoCWgPQwhegH106srdv5SGlFKUaBVLMmgWR0CswdPmYBvKdX2UKGgGaAloD0MIDQBV3LjF7L+UhpRSlGgVSzJoFkdArMOng9/z8XV9lChoBmgJaA9DCITwaOOItd6/lIaUUpRoFUsyaBZHQKzDYKhtcfN1fZQoaAZoCWgPQwiQaW0a22vcv5SGlFKUaBVLMmgWR0CswyWDHwPRdX2UKGgGaAloD0MIKNU+HY+Z5r+UhpRSlGgVSzJoFkdArMLqAxzq8nV9lChoBmgJaA9DCCS2uwfovuG/lIaUUpRoFUsyaBZHQKzEwl1KXfJ1fZQoaAZoCWgPQwh/wtmtZTLWv5SGlFKUaBVLMmgWR0CsxHuearmydX2UKGgGaAloD0MIu0OKARJN3L+UhpRSlGgVSzJoFkdArMRAfGMn7nV9lChoBmgJaA9DCLggW5avS+C/lIaUUpRoFUsyaBZHQKzEBNVR1ox1fZQoaAZoCWgPQwgqj26ERUXYv5SGlFKUaBVLMmgWR0CsxdMVUModdX2UKGgGaAloD0MIZr6DnziA3L+UhpRSlGgVSzJoFkdArMWMN2C/XXV9lChoBmgJaA9DCKZ+3lSkwtu/lIaUUpRoFUsyaBZHQKzFUPbwjMV1fZQoaAZoCWgPQwhw7NlzmZriv5SGlFKUaBVLMmgWR0CsxRVuzhP1dX2UKGgGaAloD0MIhzO/mgME4L+UhpRSlGgVSzJoFkdArMbuby6MBXV9lChoBmgJaA9DCFaeQNgpVt+/lIaUUpRoFUsyaBZHQKzGp3i704B1fZQoaAZoCWgPQwiFz9bBwd7av5SGlFKUaBVLMmgWR0CsxmxBNVR2dX2UKGgGaAloD0MIvALRkzIp47+UhpRSlGgVSzJoFkdArMYw77sOXnV9lChoBmgJaA9DCKlnQSjv4+C/lIaUUpRoFUsyaBZHQKzICClJpWV1fZQoaAZoCWgPQwiXV663zdTiv5SGlFKUaBVLMmgWR0Csx8FN+LFXdX2UKGgGaAloD0MIKEhsdw/Q2L+UhpRSlGgVSzJoFkdArMeGHFglW3V9lChoBmgJaA9DCNEHy9jQzd6/lIaUUpRoFUsyaBZHQKzHSqMFUyZ1fZQoaAZoCWgPQwjNj7+0qM/kv5SGlFKUaBVLMmgWR0CsyTAxagVXdX2UKGgGaAloD0MIGHsvvmiP27+UhpRSlGgVSzJoFkdArMjpVENOM3V9lChoBmgJaA9DCOoJSzygbOS/lIaUUpRoFUsyaBZHQKzIrq33HrB1fZQoaAZoCWgPQwh5O8JpwYvnv5SGlFKUaBVLMmgWR0CsyHNaY/mldX2UKGgGaAloD0MIEojX9Qt24r+UhpRSlGgVSzJoFkdArMpGU8mrsHV9lChoBmgJaA9DCCbkg57Nqt6/lIaUUpRoFUsyaBZHQKzJ/2qT8pF1fZQoaAZoCWgPQwi/gjRj0XTdv5SGlFKUaBVLMmgWR0CsycRFqi48dX2UKGgGaAloD0MI/kXQmEnU5b+UhpRSlGgVSzJoFkdArMmI2l2vCHV9lChoBmgJaA9DCBWL3xRWKt2/lIaUUpRoFUsyaBZHQKzLYA8Swnp1fZQoaAZoCWgPQwg+d4L917nYv5SGlFKUaBVLMmgWR0CsyxkaMrEtdX2UKGgGaAloD0MI8MSsF0M537+UhpRSlGgVSzJoFkdArMrd/J/5L3V9lChoBmgJaA9DCJhPVgxXB+C/lIaUUpRoFUsyaBZHQKzKopGWldl1fZQoaAZoCWgPQwhAaD18mSjbv5SGlFKUaBVLMmgWR0CszJinxaxHdX2UKGgGaAloD0MI54nnbAGh4b+UhpRSlGgVSzJoFkdArMxRwS8J2XV9lChoBmgJaA9DCDl9PV+zXN+/lIaUUpRoFUsyaBZHQKzMFoW56MR1fZQoaAZoCWgPQwhzu5f75Kjjv5SGlFKUaBVLMmgWR0Csy9sSsbNsdX2UKGgGaAloD0MIODKP/MFA4r+UhpRSlGgVSzJoFkdArM2vb/Ot4nV9lChoBmgJaA9DCN9sc2N6Qui/lIaUUpRoFUsyaBZHQKzNaKw6hg51fZQoaAZoCWgPQwjumLoru+Djv5SGlFKUaBVLMmgWR0CszS1o6CDmdX2UKGgGaAloD0MI1ZXP8jy42r+UhpRSlGgVSzJoFkdArMzyBshxHXV9lChoBmgJaA9DCMK9Mm/Vdea/lIaUUpRoFUsyaBZHQKzOx/IbOu91fZQoaAZoCWgPQwisArUYPEzYv5SGlFKUaBVLMmgWR0CszoEB0ZFYdX2UKGgGaAloD0MIp+mzA66r5r+UhpRSlGgVSzJoFkdArM5FqQA+6nV9lChoBmgJaA9DCGR47GexFOG/lIaUUpRoFUsyaBZHQKzOCipNsWR1fZQoaAZoCWgPQwibO/pfrkXgv5SGlFKUaBVLMmgWR0Csz9hKcurZdX2UKGgGaAloD0MISrVPx2OG47+UhpRSlGgVSzJoFkdArM+Rh8Yyf3V9lChoBmgJaA9DCNl22hoRjOi/lIaUUpRoFUsyaBZHQKzPVjo6jnF1fZQoaAZoCWgPQwgIq7GEtTHsv5SGlFKUaBVLMmgWR0CszxqzqrzYdX2UKGgGaAloD0MI8X9HVKhu4b+UhpRSlGgVSzJoFkdArNDwAQxvenV9lChoBmgJaA9DCDTY1HlU/Nq/lIaUUpRoFUsyaBZHQKzQqQT238Z1fZQoaAZoCWgPQwgxCoLHt/flv5SGlFKUaBVLMmgWR0Cs0G3Q2MsIdX2UKGgGaAloD0MIzLVoAdpW2b+UhpRSlGgVSzJoFkdArNAyWiUPhHV9lChoBmgJaA9DCNBgU+dRceC/lIaUUpRoFUsyaBZHQKzSCr2g3991fZQoaAZoCWgPQwg26bZELrjiv5SGlFKUaBVLMmgWR0Cs0cQFcIJJdX2UKGgGaAloD0MIecpqup5o4b+UhpRSlGgVSzJoFkdArNGI0fozN3V9lChoBmgJaA9DCEs6ysFsguW/lIaUUpRoFUsyaBZHQKzRTVvMr3F1fZQoaAZoCWgPQwhTzaylgDTgv5SGlFKUaBVLMmgWR0Cs00SyMUAUdX2UKGgGaAloD0MI+P9xwoTR5L+UhpRSlGgVSzJoFkdArNL93hXKbXV9lChoBmgJaA9DCL2NzY5UX+C/lIaUUpRoFUsyaBZHQKzSwpvP1L91fZQoaAZoCWgPQwgc6+I2GkDlv5SGlFKUaBVLMmgWR0Cs0ofigkC4dX2UKGgGaAloD0MIKxa/KazU5r+UhpRSlGgVSzJoFkdArNRcBGQSz3V9lChoBmgJaA9DCPbU6qurAti/lIaUUpRoFUsyaBZHQKzUFRjSXt11fZQoaAZoCWgPQwifIoeIm9Plv5SGlFKUaBVLMmgWR0Cs09nOB19wdX2UKGgGaAloD0MINPRPcLEi4r+UhpRSlGgVSzJoFkdArNOeV9nbqXV9lChoBmgJaA9DCKOutfepKuO/lIaUUpRoFUsyaBZHQKzVe9L6DXh1fZQoaAZoCWgPQwi+S6lLxjHev5SGlFKUaBVLMmgWR0Cs1TVD0DlpdX2UKGgGaAloD0MIda+T+rK05r+UhpRSlGgVSzJoFkdArNT6RuCPIXV9lChoBmgJaA9DCOJ1/YLdsN+/lIaUUpRoFUsyaBZHQKzUvxHXmNl1fZQoaAZoCWgPQwgpIVhVL7/cv5SGlFKUaBVLMmgWR0Cs1qbKJVKgdX2UKGgGaAloD0MIOdOE7Sdj27+UhpRSlGgVSzJoFkdArNZf779AHHV9lChoBmgJaA9DCEnVdhN80+a/lIaUUpRoFUsyaBZHQKzWJKwpvxZ1fZQoaAZoCWgPQwh2w7ZFmQ3Wv5SGlFKUaBVLMmgWR0Cs1elF+d9VdX2UKGgGaAloD0MI6udNRSqM1r+UhpRSlGgVSzJoFkdArNfWGj9GZ3V9lChoBmgJaA9DCAWKWMSww96/lIaUUpRoFUsyaBZHQKzXj2M85jp1fZQoaAZoCWgPQwjFdYwrLo7nv5SGlFKUaBVLMmgWR0Cs11QsGxD9dX2UKGgGaAloD0MI290DdF9O5r+UhpRSlGgVSzJoFkdArNcZbILgGnV9lChoBmgJaA9DCNDRqpZ0lNu/lIaUUpRoFUsyaBZHQKzZA4iosI51fZQoaAZoCWgPQwglP+JXrOHiv5SGlFKUaBVLMmgWR0Cs2LzI3irDdX2UKGgGaAloD0MIoffGEACc4L+UhpRSlGgVSzJoFkdArNiBrYXfqHV9lChoBmgJaA9DCJ8dcF0xI+S/lIaUUpRoFUsyaBZHQKzYRjdYW+J1fZQoaAZoCWgPQwijPskdNpHfv5SGlFKUaBVLMmgWR0Cs2k7jDKoydX2UKGgGaAloD0MISbpm8s225r+UhpRSlGgVSzJoFkdArNoI4p+c6XV9lChoBmgJaA9DCEzjF15Jcue/lIaUUpRoFUsyaBZHQKzZzbfxc3V1fZQoaAZoCWgPQwhbXyS05dzgv5SGlFKUaBVLMmgWR0Cs2ZJOvdM1dX2UKGgGaAloD0MIKV5lbVM81b+UhpRSlGgVSzJoFkdArNt5GYrrgXV9lChoBmgJaA9DCKSJd4AnLeK/lIaUUpRoFUsyaBZHQKzbMmzjWCp1fZQoaAZoCWgPQwixv+yePCzav5SGlFKUaBVLMmgWR0Cs2vde6ZpjdX2UKGgGaAloD0MIo8nFGFjH4r+UhpRSlGgVSzJoFkdArNq8gGKQ73V9lChoBmgJaA9DCJBnl299WOC/lIaUUpRoFUsyaBZHQKzcjgb6xgR1fZQoaAZoCWgPQwgi3jr/dtnkv5SGlFKUaBVLMmgWR0Cs3EciGFi8dX2UKGgGaAloD0MIG55eKcsQ4r+UhpRSlGgVSzJoFkdArNwML+glGHV9lChoBmgJaA9DCN3pzhPPWeC/lIaUUpRoFUsyaBZHQKzb0XF98Z11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (249 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.3023187493323348, "std_reward": 0.09490224602402546, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T16:03:12.394416"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aaf3622951afbe0ae37254e7824b6f7291421528cc8a5328abdd164ca6ea5d4
|
3 |
+
size 3056
|