Phando commited on
Commit
7032fd5
1 Parent(s): 1a168ae
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "HFOpenMoeForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoModel": "modeling_hf_openmoe.HFOpenMoeModel",
9
+ "AutoConfig": "configuration_hf_openmoe.HFOpenMoeConfig",
10
+ "AutoModelForCausalLM": "modeling_hf_openmoe.HFOpenMoeForCausalLM"
11
+ },
12
+ "bos_token_id": 0,
13
+ "dropout_rate": 0.0,
14
+ "enable_comm_overlap": false,
15
+ "enable_hierarchical_alltoall": false,
16
+ "enable_kernel": false,
17
+ "enable_load_balance": false,
18
+ "eos_token_id": 1,
19
+ "expert_parallel": null,
20
+ "head_dim": 128,
21
+ "hidden_act": "swiglu",
22
+ "hidden_size": 2048,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 8192,
25
+ "label_smoothing": 0.001,
26
+ "layer_norm_epsilon": 1e-06,
27
+ "load_balance_beam_width": 8,
28
+ "load_balance_group_swap_factor": 0.4,
29
+ "load_balance_tolerance": 0.1,
30
+ "max_position_embeddings": 2048,
31
+ "mlp_bias": false,
32
+ "mlp_gated": true,
33
+ "model_type": "openmoe",
34
+ "moe_layer_interval": 6,
35
+ "num_attention_heads": 24,
36
+ "num_experts": 32,
37
+ "num_hidden_layers": 24,
38
+ "num_key_value_heads": 24,
39
+ "pad_token_id": 0,
40
+ "pretraining_tp": 1,
41
+ "rms_norm_eps": 1e-06,
42
+ "rope_scaling": null,
43
+ "rope_theta": 10000.0,
44
+ "router_aux_loss_factor": 0.01,
45
+ "router_capacity_factor_eval": 2.0,
46
+ "router_capacity_factor_train": 1.25,
47
+ "router_drop_tks": true,
48
+ "router_min_capacity": 4,
49
+ "router_noisy_policy": null,
50
+ "router_topk": 2,
51
+ "router_z_loss_factor": 0.0001,
52
+ "tie_word_embeddings": false,
53
+ "torch_dtype": "float32",
54
+ "transformers_version": "4.43.3",
55
+ "use_cache": true,
56
+ "vocab_size": 256384,
57
+ "z_loss_factor": 0.01
58
+ }
configuration_hf_openmoe.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import LlamaConfig
2
+
3
+ __all__ = ["HFOpenMoeConfig"]
4
+
5
+
6
+ class HFOpenMoeConfig(LlamaConfig):
7
+ model_type = "openmoe"
8
+ def __init__(
9
+ self,
10
+ num_experts: int = 32,
11
+ moe_layer_interval: int = 6,
12
+ router_topk: int = 2,
13
+ router_capacity_factor_train: float = 1.25,
14
+ router_capacity_factor_eval: float = 2.0,
15
+ router_min_capacity: int = 4,
16
+ router_noisy_policy: str = None,
17
+ router_drop_tks: bool = True,
18
+ router_aux_loss_factor: float = 0.01,
19
+ router_z_loss_factor: float = 0.0001,
20
+ mlp_gated: bool = True,
21
+ label_smoothing: float = 0.001,
22
+ z_loss_factor: float = 0.01,
23
+ enable_load_balance: bool = False,
24
+ load_balance_tolerance: float = 0.1,
25
+ load_balance_beam_width: int = 8,
26
+ load_balance_group_swap_factor: float = 0.4,
27
+ enable_kernel: bool = False,
28
+ enable_comm_overlap: bool = False,
29
+ enable_hierarchical_alltoall: bool = False,
30
+ **kwargs
31
+ ):
32
+ self.num_experts = num_experts
33
+ self.moe_layer_interval = moe_layer_interval
34
+ self.router_topk = router_topk
35
+ self.router_capacity_factor_train = router_capacity_factor_train
36
+ self.router_capacity_factor_eval = router_capacity_factor_eval
37
+ self.router_min_capacity = router_min_capacity
38
+ self.router_noisy_policy = router_noisy_policy
39
+ self.router_drop_tks = router_drop_tks
40
+ self.router_aux_loss_factor = router_aux_loss_factor
41
+ self.router_z_loss_factor = router_z_loss_factor
42
+ self.mlp_gated = mlp_gated
43
+ self.label_smoothing = label_smoothing
44
+ self.z_loss_factor = z_loss_factor
45
+ self.enable_load_balance = enable_load_balance
46
+ self.load_balance_tolerance = load_balance_tolerance
47
+ self.load_balance_beam_width = load_balance_beam_width
48
+ self.load_balance_group_swap_factor = load_balance_group_swap_factor
49
+ self.enable_kernel = enable_kernel
50
+ self.enable_comm_overlap = enable_comm_overlap
51
+ self.enable_hierarchical_alltoall = enable_hierarchical_alltoall
52
+
53
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.43.3"
7
+ }
model-00001-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec229bf56b0726cbaba3e67994d6c96629d5d7f79bf4ba94bab28e87b41ac3dc
3
+ size 4986346648
model-00002-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb5f12a244b2e8c751852f7a844cd980f7733dca6d0de96c35b115a6d1bc07c9
3
+ size 4966062856
model-00003-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67cddbb2160baa44e38bbfae81eecc27c080a424fcffa0e4f06bcd26dc2c2ac4
3
+ size 4899325848
model-00004-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf85eb0992701ecdb8feb5fffea136955ba2c896bfd07241995bb2fb2977bd7a
3
+ size 4966062776
model-00005-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c58b7a5cb906ad76623f2b5eff4ef912d928a69109954bf5d836c7632247279
3
+ size 4999676432
model-00006-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:106916f17274c0b557de3f4e3976af5085fb21c9e5d2413ecc3d281d0b06f40f
3
+ size 4999930240
model-00007-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76a36e031c80311276ad0c4135be8f49a8603790e5b9ac64f8ffb944051335d8
3
+ size 4999642592
model-00008-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:156af9a8472948caa702719c7454f61eeea897ead29c1a6a74540749bc2afb56
3
+ size 4999964088
model-00009-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da28ce83a95c60d0cfd4da82921f2b3249e49c02af147aad8874e9365a0d0ad9
3
+ size 4966062928
model-00010-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab30a6648ad25187f2a104526c316f0e49d010b5647812eb9c929c357cb73b01
3
+ size 2637186096
model.safetensors.index.json ADDED
@@ -0,0 +1,618 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 47420186624
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00010-of-00010.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00010.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
35
+ "model.layers.11.extra_mlp.down_proj.weight": "model-00005-of-00010.safetensors",
36
+ "model.layers.11.extra_mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
37
+ "model.layers.11.extra_mlp.up_proj.weight": "model-00005-of-00010.safetensors",
38
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00010.safetensors",
39
+ "model.layers.11.mlp.experts.0.down_proj.weight": "model-00004-of-00010.safetensors",
40
+ "model.layers.11.mlp.experts.0.gate_proj.weight": "model-00004-of-00010.safetensors",
41
+ "model.layers.11.mlp.experts.0.up_proj.weight": "model-00004-of-00010.safetensors",
42
+ "model.layers.11.mlp.experts.1.down_proj.weight": "model-00004-of-00010.safetensors",
43
+ "model.layers.11.mlp.experts.1.gate_proj.weight": "model-00004-of-00010.safetensors",
44
+ "model.layers.11.mlp.experts.1.up_proj.weight": "model-00004-of-00010.safetensors",
45
+ "model.layers.11.mlp.experts.10.down_proj.weight": "model-00004-of-00010.safetensors",
46
+ "model.layers.11.mlp.experts.10.gate_proj.weight": "model-00004-of-00010.safetensors",
47
+ "model.layers.11.mlp.experts.10.up_proj.weight": "model-00004-of-00010.safetensors",
48
+ "model.layers.11.mlp.experts.11.down_proj.weight": "model-00004-of-00010.safetensors",
49
+ "model.layers.11.mlp.experts.11.gate_proj.weight": "model-00004-of-00010.safetensors",
50
+ "model.layers.11.mlp.experts.11.up_proj.weight": "model-00004-of-00010.safetensors",
51
+ "model.layers.11.mlp.experts.12.down_proj.weight": "model-00004-of-00010.safetensors",
52
+ "model.layers.11.mlp.experts.12.gate_proj.weight": "model-00004-of-00010.safetensors",
53
+ "model.layers.11.mlp.experts.12.up_proj.weight": "model-00004-of-00010.safetensors",
54
+ "model.layers.11.mlp.experts.13.down_proj.weight": "model-00004-of-00010.safetensors",
55
+ "model.layers.11.mlp.experts.13.gate_proj.weight": "model-00004-of-00010.safetensors",
56
+ "model.layers.11.mlp.experts.13.up_proj.weight": "model-00004-of-00010.safetensors",
57
+ "model.layers.11.mlp.experts.14.down_proj.weight": "model-00004-of-00010.safetensors",
58
+ "model.layers.11.mlp.experts.14.gate_proj.weight": "model-00004-of-00010.safetensors",
59
+ "model.layers.11.mlp.experts.14.up_proj.weight": "model-00004-of-00010.safetensors",
60
+ "model.layers.11.mlp.experts.15.down_proj.weight": "model-00004-of-00010.safetensors",
61
+ "model.layers.11.mlp.experts.15.gate_proj.weight": "model-00004-of-00010.safetensors",
62
+ "model.layers.11.mlp.experts.15.up_proj.weight": "model-00004-of-00010.safetensors",
63
+ "model.layers.11.mlp.experts.16.down_proj.weight": "model-00004-of-00010.safetensors",
64
+ "model.layers.11.mlp.experts.16.gate_proj.weight": "model-00004-of-00010.safetensors",
65
+ "model.layers.11.mlp.experts.16.up_proj.weight": "model-00004-of-00010.safetensors",
66
+ "model.layers.11.mlp.experts.17.down_proj.weight": "model-00004-of-00010.safetensors",
67
+ "model.layers.11.mlp.experts.17.gate_proj.weight": "model-00004-of-00010.safetensors",
68
+ "model.layers.11.mlp.experts.17.up_proj.weight": "model-00004-of-00010.safetensors",
69
+ "model.layers.11.mlp.experts.18.down_proj.weight": "model-00005-of-00010.safetensors",
70
+ "model.layers.11.mlp.experts.18.gate_proj.weight": "model-00004-of-00010.safetensors",
71
+ "model.layers.11.mlp.experts.18.up_proj.weight": "model-00005-of-00010.safetensors",
72
+ "model.layers.11.mlp.experts.19.down_proj.weight": "model-00005-of-00010.safetensors",
73
+ "model.layers.11.mlp.experts.19.gate_proj.weight": "model-00005-of-00010.safetensors",
74
+ "model.layers.11.mlp.experts.19.up_proj.weight": "model-00005-of-00010.safetensors",
75
+ "model.layers.11.mlp.experts.2.down_proj.weight": "model-00004-of-00010.safetensors",
76
+ "model.layers.11.mlp.experts.2.gate_proj.weight": "model-00004-of-00010.safetensors",
77
+ "model.layers.11.mlp.experts.2.up_proj.weight": "model-00004-of-00010.safetensors",
78
+ "model.layers.11.mlp.experts.20.down_proj.weight": "model-00005-of-00010.safetensors",
79
+ "model.layers.11.mlp.experts.20.gate_proj.weight": "model-00005-of-00010.safetensors",
80
+ "model.layers.11.mlp.experts.20.up_proj.weight": "model-00005-of-00010.safetensors",
81
+ "model.layers.11.mlp.experts.21.down_proj.weight": "model-00005-of-00010.safetensors",
82
+ "model.layers.11.mlp.experts.21.gate_proj.weight": "model-00005-of-00010.safetensors",
83
+ "model.layers.11.mlp.experts.21.up_proj.weight": "model-00005-of-00010.safetensors",
84
+ "model.layers.11.mlp.experts.22.down_proj.weight": "model-00005-of-00010.safetensors",
85
+ "model.layers.11.mlp.experts.22.gate_proj.weight": "model-00005-of-00010.safetensors",
86
+ "model.layers.11.mlp.experts.22.up_proj.weight": "model-00005-of-00010.safetensors",
87
+ "model.layers.11.mlp.experts.23.down_proj.weight": "model-00005-of-00010.safetensors",
88
+ "model.layers.11.mlp.experts.23.gate_proj.weight": "model-00005-of-00010.safetensors",
89
+ "model.layers.11.mlp.experts.23.up_proj.weight": "model-00005-of-00010.safetensors",
90
+ "model.layers.11.mlp.experts.24.down_proj.weight": "model-00005-of-00010.safetensors",
91
+ "model.layers.11.mlp.experts.24.gate_proj.weight": "model-00005-of-00010.safetensors",
92
+ "model.layers.11.mlp.experts.24.up_proj.weight": "model-00005-of-00010.safetensors",
93
+ "model.layers.11.mlp.experts.25.down_proj.weight": "model-00005-of-00010.safetensors",
94
+ "model.layers.11.mlp.experts.25.gate_proj.weight": "model-00005-of-00010.safetensors",
95
+ "model.layers.11.mlp.experts.25.up_proj.weight": "model-00005-of-00010.safetensors",
96
+ "model.layers.11.mlp.experts.26.down_proj.weight": "model-00005-of-00010.safetensors",
97
+ "model.layers.11.mlp.experts.26.gate_proj.weight": "model-00005-of-00010.safetensors",
98
+ "model.layers.11.mlp.experts.26.up_proj.weight": "model-00005-of-00010.safetensors",
99
+ "model.layers.11.mlp.experts.27.down_proj.weight": "model-00005-of-00010.safetensors",
100
+ "model.layers.11.mlp.experts.27.gate_proj.weight": "model-00005-of-00010.safetensors",
101
+ "model.layers.11.mlp.experts.27.up_proj.weight": "model-00005-of-00010.safetensors",
102
+ "model.layers.11.mlp.experts.28.down_proj.weight": "model-00005-of-00010.safetensors",
103
+ "model.layers.11.mlp.experts.28.gate_proj.weight": "model-00005-of-00010.safetensors",
104
+ "model.layers.11.mlp.experts.28.up_proj.weight": "model-00005-of-00010.safetensors",
105
+ "model.layers.11.mlp.experts.29.down_proj.weight": "model-00005-of-00010.safetensors",
106
+ "model.layers.11.mlp.experts.29.gate_proj.weight": "model-00005-of-00010.safetensors",
107
+ "model.layers.11.mlp.experts.29.up_proj.weight": "model-00005-of-00010.safetensors",
108
+ "model.layers.11.mlp.experts.3.down_proj.weight": "model-00004-of-00010.safetensors",
109
+ "model.layers.11.mlp.experts.3.gate_proj.weight": "model-00004-of-00010.safetensors",
110
+ "model.layers.11.mlp.experts.3.up_proj.weight": "model-00004-of-00010.safetensors",
111
+ "model.layers.11.mlp.experts.30.down_proj.weight": "model-00005-of-00010.safetensors",
112
+ "model.layers.11.mlp.experts.30.gate_proj.weight": "model-00005-of-00010.safetensors",
113
+ "model.layers.11.mlp.experts.30.up_proj.weight": "model-00005-of-00010.safetensors",
114
+ "model.layers.11.mlp.experts.31.down_proj.weight": "model-00005-of-00010.safetensors",
115
+ "model.layers.11.mlp.experts.31.gate_proj.weight": "model-00005-of-00010.safetensors",
116
+ "model.layers.11.mlp.experts.31.up_proj.weight": "model-00005-of-00010.safetensors",
117
+ "model.layers.11.mlp.experts.4.down_proj.weight": "model-00004-of-00010.safetensors",
118
+ "model.layers.11.mlp.experts.4.gate_proj.weight": "model-00004-of-00010.safetensors",
119
+ "model.layers.11.mlp.experts.4.up_proj.weight": "model-00004-of-00010.safetensors",
120
+ "model.layers.11.mlp.experts.5.down_proj.weight": "model-00004-of-00010.safetensors",
121
+ "model.layers.11.mlp.experts.5.gate_proj.weight": "model-00004-of-00010.safetensors",
122
+ "model.layers.11.mlp.experts.5.up_proj.weight": "model-00004-of-00010.safetensors",
123
+ "model.layers.11.mlp.experts.6.down_proj.weight": "model-00004-of-00010.safetensors",
124
+ "model.layers.11.mlp.experts.6.gate_proj.weight": "model-00004-of-00010.safetensors",
125
+ "model.layers.11.mlp.experts.6.up_proj.weight": "model-00004-of-00010.safetensors",
126
+ "model.layers.11.mlp.experts.7.down_proj.weight": "model-00004-of-00010.safetensors",
127
+ "model.layers.11.mlp.experts.7.gate_proj.weight": "model-00004-of-00010.safetensors",
128
+ "model.layers.11.mlp.experts.7.up_proj.weight": "model-00004-of-00010.safetensors",
129
+ "model.layers.11.mlp.experts.8.down_proj.weight": "model-00004-of-00010.safetensors",
130
+ "model.layers.11.mlp.experts.8.gate_proj.weight": "model-00004-of-00010.safetensors",
131
+ "model.layers.11.mlp.experts.8.up_proj.weight": "model-00004-of-00010.safetensors",
132
+ "model.layers.11.mlp.experts.9.down_proj.weight": "model-00004-of-00010.safetensors",
133
+ "model.layers.11.mlp.experts.9.gate_proj.weight": "model-00004-of-00010.safetensors",
134
+ "model.layers.11.mlp.experts.9.up_proj.weight": "model-00004-of-00010.safetensors",
135
+ "model.layers.11.mlp.gate.weight": "model-00003-of-00010.safetensors",
136
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
137
+ "model.layers.11.pre_extra_mlp_layernorm.weight": "model-00005-of-00010.safetensors",
138
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
139
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
140
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
141
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
142
+ "model.layers.12.input_layernorm.weight": "model-00005-of-00010.safetensors",
143
+ "model.layers.12.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
144
+ "model.layers.12.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
145
+ "model.layers.12.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
146
+ "model.layers.12.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
147
+ "model.layers.12.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
148
+ "model.layers.12.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
149
+ "model.layers.12.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
150
+ "model.layers.12.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
151
+ "model.layers.13.input_layernorm.weight": "model-00005-of-00010.safetensors",
152
+ "model.layers.13.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
153
+ "model.layers.13.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
154
+ "model.layers.13.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
155
+ "model.layers.13.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
156
+ "model.layers.13.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
157
+ "model.layers.13.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
158
+ "model.layers.13.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
159
+ "model.layers.13.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
160
+ "model.layers.14.input_layernorm.weight": "model-00005-of-00010.safetensors",
161
+ "model.layers.14.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
162
+ "model.layers.14.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
163
+ "model.layers.14.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
164
+ "model.layers.14.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
165
+ "model.layers.14.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
166
+ "model.layers.14.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
167
+ "model.layers.14.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
168
+ "model.layers.14.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
169
+ "model.layers.15.input_layernorm.weight": "model-00006-of-00010.safetensors",
170
+ "model.layers.15.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
171
+ "model.layers.15.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
172
+ "model.layers.15.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
173
+ "model.layers.15.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
174
+ "model.layers.15.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
175
+ "model.layers.15.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
176
+ "model.layers.15.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
177
+ "model.layers.15.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
178
+ "model.layers.16.input_layernorm.weight": "model-00006-of-00010.safetensors",
179
+ "model.layers.16.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
180
+ "model.layers.16.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
181
+ "model.layers.16.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
182
+ "model.layers.16.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
183
+ "model.layers.16.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
184
+ "model.layers.16.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
185
+ "model.layers.16.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
186
+ "model.layers.16.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
187
+ "model.layers.17.extra_mlp.down_proj.weight": "model-00007-of-00010.safetensors",
188
+ "model.layers.17.extra_mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
189
+ "model.layers.17.extra_mlp.up_proj.weight": "model-00007-of-00010.safetensors",
190
+ "model.layers.17.input_layernorm.weight": "model-00006-of-00010.safetensors",
191
+ "model.layers.17.mlp.experts.0.down_proj.weight": "model-00006-of-00010.safetensors",
192
+ "model.layers.17.mlp.experts.0.gate_proj.weight": "model-00006-of-00010.safetensors",
193
+ "model.layers.17.mlp.experts.0.up_proj.weight": "model-00006-of-00010.safetensors",
194
+ "model.layers.17.mlp.experts.1.down_proj.weight": "model-00006-of-00010.safetensors",
195
+ "model.layers.17.mlp.experts.1.gate_proj.weight": "model-00006-of-00010.safetensors",
196
+ "model.layers.17.mlp.experts.1.up_proj.weight": "model-00006-of-00010.safetensors",
197
+ "model.layers.17.mlp.experts.10.down_proj.weight": "model-00006-of-00010.safetensors",
198
+ "model.layers.17.mlp.experts.10.gate_proj.weight": "model-00006-of-00010.safetensors",
199
+ "model.layers.17.mlp.experts.10.up_proj.weight": "model-00006-of-00010.safetensors",
200
+ "model.layers.17.mlp.experts.11.down_proj.weight": "model-00006-of-00010.safetensors",
201
+ "model.layers.17.mlp.experts.11.gate_proj.weight": "model-00006-of-00010.safetensors",
202
+ "model.layers.17.mlp.experts.11.up_proj.weight": "model-00006-of-00010.safetensors",
203
+ "model.layers.17.mlp.experts.12.down_proj.weight": "model-00006-of-00010.safetensors",
204
+ "model.layers.17.mlp.experts.12.gate_proj.weight": "model-00006-of-00010.safetensors",
205
+ "model.layers.17.mlp.experts.12.up_proj.weight": "model-00006-of-00010.safetensors",
206
+ "model.layers.17.mlp.experts.13.down_proj.weight": "model-00006-of-00010.safetensors",
207
+ "model.layers.17.mlp.experts.13.gate_proj.weight": "model-00006-of-00010.safetensors",
208
+ "model.layers.17.mlp.experts.13.up_proj.weight": "model-00006-of-00010.safetensors",
209
+ "model.layers.17.mlp.experts.14.down_proj.weight": "model-00006-of-00010.safetensors",
210
+ "model.layers.17.mlp.experts.14.gate_proj.weight": "model-00006-of-00010.safetensors",
211
+ "model.layers.17.mlp.experts.14.up_proj.weight": "model-00006-of-00010.safetensors",
212
+ "model.layers.17.mlp.experts.15.down_proj.weight": "model-00007-of-00010.safetensors",
213
+ "model.layers.17.mlp.experts.15.gate_proj.weight": "model-00006-of-00010.safetensors",
214
+ "model.layers.17.mlp.experts.15.up_proj.weight": "model-00007-of-00010.safetensors",
215
+ "model.layers.17.mlp.experts.16.down_proj.weight": "model-00007-of-00010.safetensors",
216
+ "model.layers.17.mlp.experts.16.gate_proj.weight": "model-00007-of-00010.safetensors",
217
+ "model.layers.17.mlp.experts.16.up_proj.weight": "model-00007-of-00010.safetensors",
218
+ "model.layers.17.mlp.experts.17.down_proj.weight": "model-00007-of-00010.safetensors",
219
+ "model.layers.17.mlp.experts.17.gate_proj.weight": "model-00007-of-00010.safetensors",
220
+ "model.layers.17.mlp.experts.17.up_proj.weight": "model-00007-of-00010.safetensors",
221
+ "model.layers.17.mlp.experts.18.down_proj.weight": "model-00007-of-00010.safetensors",
222
+ "model.layers.17.mlp.experts.18.gate_proj.weight": "model-00007-of-00010.safetensors",
223
+ "model.layers.17.mlp.experts.18.up_proj.weight": "model-00007-of-00010.safetensors",
224
+ "model.layers.17.mlp.experts.19.down_proj.weight": "model-00007-of-00010.safetensors",
225
+ "model.layers.17.mlp.experts.19.gate_proj.weight": "model-00007-of-00010.safetensors",
226
+ "model.layers.17.mlp.experts.19.up_proj.weight": "model-00007-of-00010.safetensors",
227
+ "model.layers.17.mlp.experts.2.down_proj.weight": "model-00006-of-00010.safetensors",
228
+ "model.layers.17.mlp.experts.2.gate_proj.weight": "model-00006-of-00010.safetensors",
229
+ "model.layers.17.mlp.experts.2.up_proj.weight": "model-00006-of-00010.safetensors",
230
+ "model.layers.17.mlp.experts.20.down_proj.weight": "model-00007-of-00010.safetensors",
231
+ "model.layers.17.mlp.experts.20.gate_proj.weight": "model-00007-of-00010.safetensors",
232
+ "model.layers.17.mlp.experts.20.up_proj.weight": "model-00007-of-00010.safetensors",
233
+ "model.layers.17.mlp.experts.21.down_proj.weight": "model-00007-of-00010.safetensors",
234
+ "model.layers.17.mlp.experts.21.gate_proj.weight": "model-00007-of-00010.safetensors",
235
+ "model.layers.17.mlp.experts.21.up_proj.weight": "model-00007-of-00010.safetensors",
236
+ "model.layers.17.mlp.experts.22.down_proj.weight": "model-00007-of-00010.safetensors",
237
+ "model.layers.17.mlp.experts.22.gate_proj.weight": "model-00007-of-00010.safetensors",
238
+ "model.layers.17.mlp.experts.22.up_proj.weight": "model-00007-of-00010.safetensors",
239
+ "model.layers.17.mlp.experts.23.down_proj.weight": "model-00007-of-00010.safetensors",
240
+ "model.layers.17.mlp.experts.23.gate_proj.weight": "model-00007-of-00010.safetensors",
241
+ "model.layers.17.mlp.experts.23.up_proj.weight": "model-00007-of-00010.safetensors",
242
+ "model.layers.17.mlp.experts.24.down_proj.weight": "model-00007-of-00010.safetensors",
243
+ "model.layers.17.mlp.experts.24.gate_proj.weight": "model-00007-of-00010.safetensors",
244
+ "model.layers.17.mlp.experts.24.up_proj.weight": "model-00007-of-00010.safetensors",
245
+ "model.layers.17.mlp.experts.25.down_proj.weight": "model-00007-of-00010.safetensors",
246
+ "model.layers.17.mlp.experts.25.gate_proj.weight": "model-00007-of-00010.safetensors",
247
+ "model.layers.17.mlp.experts.25.up_proj.weight": "model-00007-of-00010.safetensors",
248
+ "model.layers.17.mlp.experts.26.down_proj.weight": "model-00007-of-00010.safetensors",
249
+ "model.layers.17.mlp.experts.26.gate_proj.weight": "model-00007-of-00010.safetensors",
250
+ "model.layers.17.mlp.experts.26.up_proj.weight": "model-00007-of-00010.safetensors",
251
+ "model.layers.17.mlp.experts.27.down_proj.weight": "model-00007-of-00010.safetensors",
252
+ "model.layers.17.mlp.experts.27.gate_proj.weight": "model-00007-of-00010.safetensors",
253
+ "model.layers.17.mlp.experts.27.up_proj.weight": "model-00007-of-00010.safetensors",
254
+ "model.layers.17.mlp.experts.28.down_proj.weight": "model-00007-of-00010.safetensors",
255
+ "model.layers.17.mlp.experts.28.gate_proj.weight": "model-00007-of-00010.safetensors",
256
+ "model.layers.17.mlp.experts.28.up_proj.weight": "model-00007-of-00010.safetensors",
257
+ "model.layers.17.mlp.experts.29.down_proj.weight": "model-00007-of-00010.safetensors",
258
+ "model.layers.17.mlp.experts.29.gate_proj.weight": "model-00007-of-00010.safetensors",
259
+ "model.layers.17.mlp.experts.29.up_proj.weight": "model-00007-of-00010.safetensors",
260
+ "model.layers.17.mlp.experts.3.down_proj.weight": "model-00006-of-00010.safetensors",
261
+ "model.layers.17.mlp.experts.3.gate_proj.weight": "model-00006-of-00010.safetensors",
262
+ "model.layers.17.mlp.experts.3.up_proj.weight": "model-00006-of-00010.safetensors",
263
+ "model.layers.17.mlp.experts.30.down_proj.weight": "model-00007-of-00010.safetensors",
264
+ "model.layers.17.mlp.experts.30.gate_proj.weight": "model-00007-of-00010.safetensors",
265
+ "model.layers.17.mlp.experts.30.up_proj.weight": "model-00007-of-00010.safetensors",
266
+ "model.layers.17.mlp.experts.31.down_proj.weight": "model-00007-of-00010.safetensors",
267
+ "model.layers.17.mlp.experts.31.gate_proj.weight": "model-00007-of-00010.safetensors",
268
+ "model.layers.17.mlp.experts.31.up_proj.weight": "model-00007-of-00010.safetensors",
269
+ "model.layers.17.mlp.experts.4.down_proj.weight": "model-00006-of-00010.safetensors",
270
+ "model.layers.17.mlp.experts.4.gate_proj.weight": "model-00006-of-00010.safetensors",
271
+ "model.layers.17.mlp.experts.4.up_proj.weight": "model-00006-of-00010.safetensors",
272
+ "model.layers.17.mlp.experts.5.down_proj.weight": "model-00006-of-00010.safetensors",
273
+ "model.layers.17.mlp.experts.5.gate_proj.weight": "model-00006-of-00010.safetensors",
274
+ "model.layers.17.mlp.experts.5.up_proj.weight": "model-00006-of-00010.safetensors",
275
+ "model.layers.17.mlp.experts.6.down_proj.weight": "model-00006-of-00010.safetensors",
276
+ "model.layers.17.mlp.experts.6.gate_proj.weight": "model-00006-of-00010.safetensors",
277
+ "model.layers.17.mlp.experts.6.up_proj.weight": "model-00006-of-00010.safetensors",
278
+ "model.layers.17.mlp.experts.7.down_proj.weight": "model-00006-of-00010.safetensors",
279
+ "model.layers.17.mlp.experts.7.gate_proj.weight": "model-00006-of-00010.safetensors",
280
+ "model.layers.17.mlp.experts.7.up_proj.weight": "model-00006-of-00010.safetensors",
281
+ "model.layers.17.mlp.experts.8.down_proj.weight": "model-00006-of-00010.safetensors",
282
+ "model.layers.17.mlp.experts.8.gate_proj.weight": "model-00006-of-00010.safetensors",
283
+ "model.layers.17.mlp.experts.8.up_proj.weight": "model-00006-of-00010.safetensors",
284
+ "model.layers.17.mlp.experts.9.down_proj.weight": "model-00006-of-00010.safetensors",
285
+ "model.layers.17.mlp.experts.9.gate_proj.weight": "model-00006-of-00010.safetensors",
286
+ "model.layers.17.mlp.experts.9.up_proj.weight": "model-00006-of-00010.safetensors",
287
+ "model.layers.17.mlp.gate.weight": "model-00006-of-00010.safetensors",
288
+ "model.layers.17.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
289
+ "model.layers.17.pre_extra_mlp_layernorm.weight": "model-00007-of-00010.safetensors",
290
+ "model.layers.17.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
291
+ "model.layers.17.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
292
+ "model.layers.17.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
293
+ "model.layers.17.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
294
+ "model.layers.18.input_layernorm.weight": "model-00007-of-00010.safetensors",
295
+ "model.layers.18.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
296
+ "model.layers.18.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
297
+ "model.layers.18.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
298
+ "model.layers.18.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
299
+ "model.layers.18.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
300
+ "model.layers.18.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
301
+ "model.layers.18.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
302
+ "model.layers.18.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
303
+ "model.layers.19.input_layernorm.weight": "model-00008-of-00010.safetensors",
304
+ "model.layers.19.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
305
+ "model.layers.19.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
306
+ "model.layers.19.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
307
+ "model.layers.19.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
308
+ "model.layers.19.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
309
+ "model.layers.19.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
310
+ "model.layers.19.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
311
+ "model.layers.19.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
312
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00010.safetensors",
313
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
314
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
315
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
316
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
317
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
318
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
319
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
320
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
321
+ "model.layers.20.input_layernorm.weight": "model-00008-of-00010.safetensors",
322
+ "model.layers.20.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
323
+ "model.layers.20.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
324
+ "model.layers.20.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
325
+ "model.layers.20.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
326
+ "model.layers.20.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
327
+ "model.layers.20.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
328
+ "model.layers.20.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
329
+ "model.layers.20.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
330
+ "model.layers.21.input_layernorm.weight": "model-00008-of-00010.safetensors",
331
+ "model.layers.21.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
332
+ "model.layers.21.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
333
+ "model.layers.21.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
334
+ "model.layers.21.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
335
+ "model.layers.21.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
336
+ "model.layers.21.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
337
+ "model.layers.21.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
338
+ "model.layers.21.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
339
+ "model.layers.22.input_layernorm.weight": "model-00008-of-00010.safetensors",
340
+ "model.layers.22.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
341
+ "model.layers.22.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
342
+ "model.layers.22.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
343
+ "model.layers.22.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
344
+ "model.layers.22.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
345
+ "model.layers.22.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
346
+ "model.layers.22.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
347
+ "model.layers.22.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
348
+ "model.layers.23.extra_mlp.down_proj.weight": "model-00010-of-00010.safetensors",
349
+ "model.layers.23.extra_mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
350
+ "model.layers.23.extra_mlp.up_proj.weight": "model-00010-of-00010.safetensors",
351
+ "model.layers.23.input_layernorm.weight": "model-00008-of-00010.safetensors",
352
+ "model.layers.23.mlp.experts.0.down_proj.weight": "model-00008-of-00010.safetensors",
353
+ "model.layers.23.mlp.experts.0.gate_proj.weight": "model-00008-of-00010.safetensors",
354
+ "model.layers.23.mlp.experts.0.up_proj.weight": "model-00008-of-00010.safetensors",
355
+ "model.layers.23.mlp.experts.1.down_proj.weight": "model-00008-of-00010.safetensors",
356
+ "model.layers.23.mlp.experts.1.gate_proj.weight": "model-00008-of-00010.safetensors",
357
+ "model.layers.23.mlp.experts.1.up_proj.weight": "model-00008-of-00010.safetensors",
358
+ "model.layers.23.mlp.experts.10.down_proj.weight": "model-00008-of-00010.safetensors",
359
+ "model.layers.23.mlp.experts.10.gate_proj.weight": "model-00008-of-00010.safetensors",
360
+ "model.layers.23.mlp.experts.10.up_proj.weight": "model-00008-of-00010.safetensors",
361
+ "model.layers.23.mlp.experts.11.down_proj.weight": "model-00008-of-00010.safetensors",
362
+ "model.layers.23.mlp.experts.11.gate_proj.weight": "model-00008-of-00010.safetensors",
363
+ "model.layers.23.mlp.experts.11.up_proj.weight": "model-00008-of-00010.safetensors",
364
+ "model.layers.23.mlp.experts.12.down_proj.weight": "model-00009-of-00010.safetensors",
365
+ "model.layers.23.mlp.experts.12.gate_proj.weight": "model-00008-of-00010.safetensors",
366
+ "model.layers.23.mlp.experts.12.up_proj.weight": "model-00009-of-00010.safetensors",
367
+ "model.layers.23.mlp.experts.13.down_proj.weight": "model-00009-of-00010.safetensors",
368
+ "model.layers.23.mlp.experts.13.gate_proj.weight": "model-00009-of-00010.safetensors",
369
+ "model.layers.23.mlp.experts.13.up_proj.weight": "model-00009-of-00010.safetensors",
370
+ "model.layers.23.mlp.experts.14.down_proj.weight": "model-00009-of-00010.safetensors",
371
+ "model.layers.23.mlp.experts.14.gate_proj.weight": "model-00009-of-00010.safetensors",
372
+ "model.layers.23.mlp.experts.14.up_proj.weight": "model-00009-of-00010.safetensors",
373
+ "model.layers.23.mlp.experts.15.down_proj.weight": "model-00009-of-00010.safetensors",
374
+ "model.layers.23.mlp.experts.15.gate_proj.weight": "model-00009-of-00010.safetensors",
375
+ "model.layers.23.mlp.experts.15.up_proj.weight": "model-00009-of-00010.safetensors",
376
+ "model.layers.23.mlp.experts.16.down_proj.weight": "model-00009-of-00010.safetensors",
377
+ "model.layers.23.mlp.experts.16.gate_proj.weight": "model-00009-of-00010.safetensors",
378
+ "model.layers.23.mlp.experts.16.up_proj.weight": "model-00009-of-00010.safetensors",
379
+ "model.layers.23.mlp.experts.17.down_proj.weight": "model-00009-of-00010.safetensors",
380
+ "model.layers.23.mlp.experts.17.gate_proj.weight": "model-00009-of-00010.safetensors",
381
+ "model.layers.23.mlp.experts.17.up_proj.weight": "model-00009-of-00010.safetensors",
382
+ "model.layers.23.mlp.experts.18.down_proj.weight": "model-00009-of-00010.safetensors",
383
+ "model.layers.23.mlp.experts.18.gate_proj.weight": "model-00009-of-00010.safetensors",
384
+ "model.layers.23.mlp.experts.18.up_proj.weight": "model-00009-of-00010.safetensors",
385
+ "model.layers.23.mlp.experts.19.down_proj.weight": "model-00009-of-00010.safetensors",
386
+ "model.layers.23.mlp.experts.19.gate_proj.weight": "model-00009-of-00010.safetensors",
387
+ "model.layers.23.mlp.experts.19.up_proj.weight": "model-00009-of-00010.safetensors",
388
+ "model.layers.23.mlp.experts.2.down_proj.weight": "model-00008-of-00010.safetensors",
389
+ "model.layers.23.mlp.experts.2.gate_proj.weight": "model-00008-of-00010.safetensors",
390
+ "model.layers.23.mlp.experts.2.up_proj.weight": "model-00008-of-00010.safetensors",
391
+ "model.layers.23.mlp.experts.20.down_proj.weight": "model-00009-of-00010.safetensors",
392
+ "model.layers.23.mlp.experts.20.gate_proj.weight": "model-00009-of-00010.safetensors",
393
+ "model.layers.23.mlp.experts.20.up_proj.weight": "model-00009-of-00010.safetensors",
394
+ "model.layers.23.mlp.experts.21.down_proj.weight": "model-00009-of-00010.safetensors",
395
+ "model.layers.23.mlp.experts.21.gate_proj.weight": "model-00009-of-00010.safetensors",
396
+ "model.layers.23.mlp.experts.21.up_proj.weight": "model-00009-of-00010.safetensors",
397
+ "model.layers.23.mlp.experts.22.down_proj.weight": "model-00009-of-00010.safetensors",
398
+ "model.layers.23.mlp.experts.22.gate_proj.weight": "model-00009-of-00010.safetensors",
399
+ "model.layers.23.mlp.experts.22.up_proj.weight": "model-00009-of-00010.safetensors",
400
+ "model.layers.23.mlp.experts.23.down_proj.weight": "model-00009-of-00010.safetensors",
401
+ "model.layers.23.mlp.experts.23.gate_proj.weight": "model-00009-of-00010.safetensors",
402
+ "model.layers.23.mlp.experts.23.up_proj.weight": "model-00009-of-00010.safetensors",
403
+ "model.layers.23.mlp.experts.24.down_proj.weight": "model-00009-of-00010.safetensors",
404
+ "model.layers.23.mlp.experts.24.gate_proj.weight": "model-00009-of-00010.safetensors",
405
+ "model.layers.23.mlp.experts.24.up_proj.weight": "model-00009-of-00010.safetensors",
406
+ "model.layers.23.mlp.experts.25.down_proj.weight": "model-00009-of-00010.safetensors",
407
+ "model.layers.23.mlp.experts.25.gate_proj.weight": "model-00009-of-00010.safetensors",
408
+ "model.layers.23.mlp.experts.25.up_proj.weight": "model-00009-of-00010.safetensors",
409
+ "model.layers.23.mlp.experts.26.down_proj.weight": "model-00009-of-00010.safetensors",
410
+ "model.layers.23.mlp.experts.26.gate_proj.weight": "model-00009-of-00010.safetensors",
411
+ "model.layers.23.mlp.experts.26.up_proj.weight": "model-00009-of-00010.safetensors",
412
+ "model.layers.23.mlp.experts.27.down_proj.weight": "model-00009-of-00010.safetensors",
413
+ "model.layers.23.mlp.experts.27.gate_proj.weight": "model-00009-of-00010.safetensors",
414
+ "model.layers.23.mlp.experts.27.up_proj.weight": "model-00009-of-00010.safetensors",
415
+ "model.layers.23.mlp.experts.28.down_proj.weight": "model-00009-of-00010.safetensors",
416
+ "model.layers.23.mlp.experts.28.gate_proj.weight": "model-00009-of-00010.safetensors",
417
+ "model.layers.23.mlp.experts.28.up_proj.weight": "model-00009-of-00010.safetensors",
418
+ "model.layers.23.mlp.experts.29.down_proj.weight": "model-00009-of-00010.safetensors",
419
+ "model.layers.23.mlp.experts.29.gate_proj.weight": "model-00009-of-00010.safetensors",
420
+ "model.layers.23.mlp.experts.29.up_proj.weight": "model-00009-of-00010.safetensors",
421
+ "model.layers.23.mlp.experts.3.down_proj.weight": "model-00008-of-00010.safetensors",
422
+ "model.layers.23.mlp.experts.3.gate_proj.weight": "model-00008-of-00010.safetensors",
423
+ "model.layers.23.mlp.experts.3.up_proj.weight": "model-00008-of-00010.safetensors",
424
+ "model.layers.23.mlp.experts.30.down_proj.weight": "model-00009-of-00010.safetensors",
425
+ "model.layers.23.mlp.experts.30.gate_proj.weight": "model-00009-of-00010.safetensors",
426
+ "model.layers.23.mlp.experts.30.up_proj.weight": "model-00009-of-00010.safetensors",
427
+ "model.layers.23.mlp.experts.31.down_proj.weight": "model-00010-of-00010.safetensors",
428
+ "model.layers.23.mlp.experts.31.gate_proj.weight": "model-00010-of-00010.safetensors",
429
+ "model.layers.23.mlp.experts.31.up_proj.weight": "model-00010-of-00010.safetensors",
430
+ "model.layers.23.mlp.experts.4.down_proj.weight": "model-00008-of-00010.safetensors",
431
+ "model.layers.23.mlp.experts.4.gate_proj.weight": "model-00008-of-00010.safetensors",
432
+ "model.layers.23.mlp.experts.4.up_proj.weight": "model-00008-of-00010.safetensors",
433
+ "model.layers.23.mlp.experts.5.down_proj.weight": "model-00008-of-00010.safetensors",
434
+ "model.layers.23.mlp.experts.5.gate_proj.weight": "model-00008-of-00010.safetensors",
435
+ "model.layers.23.mlp.experts.5.up_proj.weight": "model-00008-of-00010.safetensors",
436
+ "model.layers.23.mlp.experts.6.down_proj.weight": "model-00008-of-00010.safetensors",
437
+ "model.layers.23.mlp.experts.6.gate_proj.weight": "model-00008-of-00010.safetensors",
438
+ "model.layers.23.mlp.experts.6.up_proj.weight": "model-00008-of-00010.safetensors",
439
+ "model.layers.23.mlp.experts.7.down_proj.weight": "model-00008-of-00010.safetensors",
440
+ "model.layers.23.mlp.experts.7.gate_proj.weight": "model-00008-of-00010.safetensors",
441
+ "model.layers.23.mlp.experts.7.up_proj.weight": "model-00008-of-00010.safetensors",
442
+ "model.layers.23.mlp.experts.8.down_proj.weight": "model-00008-of-00010.safetensors",
443
+ "model.layers.23.mlp.experts.8.gate_proj.weight": "model-00008-of-00010.safetensors",
444
+ "model.layers.23.mlp.experts.8.up_proj.weight": "model-00008-of-00010.safetensors",
445
+ "model.layers.23.mlp.experts.9.down_proj.weight": "model-00008-of-00010.safetensors",
446
+ "model.layers.23.mlp.experts.9.gate_proj.weight": "model-00008-of-00010.safetensors",
447
+ "model.layers.23.mlp.experts.9.up_proj.weight": "model-00008-of-00010.safetensors",
448
+ "model.layers.23.mlp.gate.weight": "model-00008-of-00010.safetensors",
449
+ "model.layers.23.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
450
+ "model.layers.23.pre_extra_mlp_layernorm.weight": "model-00010-of-00010.safetensors",
451
+ "model.layers.23.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
452
+ "model.layers.23.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
453
+ "model.layers.23.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
454
+ "model.layers.23.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
455
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00010.safetensors",
456
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
457
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
458
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
459
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
460
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
461
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
462
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
463
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
464
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00010.safetensors",
465
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
466
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
467
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
468
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
469
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
470
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
471
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
472
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
473
+ "model.layers.5.extra_mlp.down_proj.weight": "model-00003-of-00010.safetensors",
474
+ "model.layers.5.extra_mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
475
+ "model.layers.5.extra_mlp.up_proj.weight": "model-00003-of-00010.safetensors",
476
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00010.safetensors",
477
+ "model.layers.5.mlp.experts.0.down_proj.weight": "model-00001-of-00010.safetensors",
478
+ "model.layers.5.mlp.experts.0.gate_proj.weight": "model-00001-of-00010.safetensors",
479
+ "model.layers.5.mlp.experts.0.up_proj.weight": "model-00001-of-00010.safetensors",
480
+ "model.layers.5.mlp.experts.1.down_proj.weight": "model-00001-of-00010.safetensors",
481
+ "model.layers.5.mlp.experts.1.gate_proj.weight": "model-00001-of-00010.safetensors",
482
+ "model.layers.5.mlp.experts.1.up_proj.weight": "model-00001-of-00010.safetensors",
483
+ "model.layers.5.mlp.experts.10.down_proj.weight": "model-00002-of-00010.safetensors",
484
+ "model.layers.5.mlp.experts.10.gate_proj.weight": "model-00002-of-00010.safetensors",
485
+ "model.layers.5.mlp.experts.10.up_proj.weight": "model-00002-of-00010.safetensors",
486
+ "model.layers.5.mlp.experts.11.down_proj.weight": "model-00002-of-00010.safetensors",
487
+ "model.layers.5.mlp.experts.11.gate_proj.weight": "model-00002-of-00010.safetensors",
488
+ "model.layers.5.mlp.experts.11.up_proj.weight": "model-00002-of-00010.safetensors",
489
+ "model.layers.5.mlp.experts.12.down_proj.weight": "model-00002-of-00010.safetensors",
490
+ "model.layers.5.mlp.experts.12.gate_proj.weight": "model-00002-of-00010.safetensors",
491
+ "model.layers.5.mlp.experts.12.up_proj.weight": "model-00002-of-00010.safetensors",
492
+ "model.layers.5.mlp.experts.13.down_proj.weight": "model-00002-of-00010.safetensors",
493
+ "model.layers.5.mlp.experts.13.gate_proj.weight": "model-00002-of-00010.safetensors",
494
+ "model.layers.5.mlp.experts.13.up_proj.weight": "model-00002-of-00010.safetensors",
495
+ "model.layers.5.mlp.experts.14.down_proj.weight": "model-00002-of-00010.safetensors",
496
+ "model.layers.5.mlp.experts.14.gate_proj.weight": "model-00002-of-00010.safetensors",
497
+ "model.layers.5.mlp.experts.14.up_proj.weight": "model-00002-of-00010.safetensors",
498
+ "model.layers.5.mlp.experts.15.down_proj.weight": "model-00002-of-00010.safetensors",
499
+ "model.layers.5.mlp.experts.15.gate_proj.weight": "model-00002-of-00010.safetensors",
500
+ "model.layers.5.mlp.experts.15.up_proj.weight": "model-00002-of-00010.safetensors",
501
+ "model.layers.5.mlp.experts.16.down_proj.weight": "model-00002-of-00010.safetensors",
502
+ "model.layers.5.mlp.experts.16.gate_proj.weight": "model-00002-of-00010.safetensors",
503
+ "model.layers.5.mlp.experts.16.up_proj.weight": "model-00002-of-00010.safetensors",
504
+ "model.layers.5.mlp.experts.17.down_proj.weight": "model-00002-of-00010.safetensors",
505
+ "model.layers.5.mlp.experts.17.gate_proj.weight": "model-00002-of-00010.safetensors",
506
+ "model.layers.5.mlp.experts.17.up_proj.weight": "model-00002-of-00010.safetensors",
507
+ "model.layers.5.mlp.experts.18.down_proj.weight": "model-00002-of-00010.safetensors",
508
+ "model.layers.5.mlp.experts.18.gate_proj.weight": "model-00002-of-00010.safetensors",
509
+ "model.layers.5.mlp.experts.18.up_proj.weight": "model-00002-of-00010.safetensors",
510
+ "model.layers.5.mlp.experts.19.down_proj.weight": "model-00002-of-00010.safetensors",
511
+ "model.layers.5.mlp.experts.19.gate_proj.weight": "model-00002-of-00010.safetensors",
512
+ "model.layers.5.mlp.experts.19.up_proj.weight": "model-00002-of-00010.safetensors",
513
+ "model.layers.5.mlp.experts.2.down_proj.weight": "model-00001-of-00010.safetensors",
514
+ "model.layers.5.mlp.experts.2.gate_proj.weight": "model-00001-of-00010.safetensors",
515
+ "model.layers.5.mlp.experts.2.up_proj.weight": "model-00001-of-00010.safetensors",
516
+ "model.layers.5.mlp.experts.20.down_proj.weight": "model-00002-of-00010.safetensors",
517
+ "model.layers.5.mlp.experts.20.gate_proj.weight": "model-00002-of-00010.safetensors",
518
+ "model.layers.5.mlp.experts.20.up_proj.weight": "model-00002-of-00010.safetensors",
519
+ "model.layers.5.mlp.experts.21.down_proj.weight": "model-00002-of-00010.safetensors",
520
+ "model.layers.5.mlp.experts.21.gate_proj.weight": "model-00002-of-00010.safetensors",
521
+ "model.layers.5.mlp.experts.21.up_proj.weight": "model-00002-of-00010.safetensors",
522
+ "model.layers.5.mlp.experts.22.down_proj.weight": "model-00003-of-00010.safetensors",
523
+ "model.layers.5.mlp.experts.22.gate_proj.weight": "model-00003-of-00010.safetensors",
524
+ "model.layers.5.mlp.experts.22.up_proj.weight": "model-00003-of-00010.safetensors",
525
+ "model.layers.5.mlp.experts.23.down_proj.weight": "model-00003-of-00010.safetensors",
526
+ "model.layers.5.mlp.experts.23.gate_proj.weight": "model-00003-of-00010.safetensors",
527
+ "model.layers.5.mlp.experts.23.up_proj.weight": "model-00003-of-00010.safetensors",
528
+ "model.layers.5.mlp.experts.24.down_proj.weight": "model-00003-of-00010.safetensors",
529
+ "model.layers.5.mlp.experts.24.gate_proj.weight": "model-00003-of-00010.safetensors",
530
+ "model.layers.5.mlp.experts.24.up_proj.weight": "model-00003-of-00010.safetensors",
531
+ "model.layers.5.mlp.experts.25.down_proj.weight": "model-00003-of-00010.safetensors",
532
+ "model.layers.5.mlp.experts.25.gate_proj.weight": "model-00003-of-00010.safetensors",
533
+ "model.layers.5.mlp.experts.25.up_proj.weight": "model-00003-of-00010.safetensors",
534
+ "model.layers.5.mlp.experts.26.down_proj.weight": "model-00003-of-00010.safetensors",
535
+ "model.layers.5.mlp.experts.26.gate_proj.weight": "model-00003-of-00010.safetensors",
536
+ "model.layers.5.mlp.experts.26.up_proj.weight": "model-00003-of-00010.safetensors",
537
+ "model.layers.5.mlp.experts.27.down_proj.weight": "model-00003-of-00010.safetensors",
538
+ "model.layers.5.mlp.experts.27.gate_proj.weight": "model-00003-of-00010.safetensors",
539
+ "model.layers.5.mlp.experts.27.up_proj.weight": "model-00003-of-00010.safetensors",
540
+ "model.layers.5.mlp.experts.28.down_proj.weight": "model-00003-of-00010.safetensors",
541
+ "model.layers.5.mlp.experts.28.gate_proj.weight": "model-00003-of-00010.safetensors",
542
+ "model.layers.5.mlp.experts.28.up_proj.weight": "model-00003-of-00010.safetensors",
543
+ "model.layers.5.mlp.experts.29.down_proj.weight": "model-00003-of-00010.safetensors",
544
+ "model.layers.5.mlp.experts.29.gate_proj.weight": "model-00003-of-00010.safetensors",
545
+ "model.layers.5.mlp.experts.29.up_proj.weight": "model-00003-of-00010.safetensors",
546
+ "model.layers.5.mlp.experts.3.down_proj.weight": "model-00002-of-00010.safetensors",
547
+ "model.layers.5.mlp.experts.3.gate_proj.weight": "model-00001-of-00010.safetensors",
548
+ "model.layers.5.mlp.experts.3.up_proj.weight": "model-00002-of-00010.safetensors",
549
+ "model.layers.5.mlp.experts.30.down_proj.weight": "model-00003-of-00010.safetensors",
550
+ "model.layers.5.mlp.experts.30.gate_proj.weight": "model-00003-of-00010.safetensors",
551
+ "model.layers.5.mlp.experts.30.up_proj.weight": "model-00003-of-00010.safetensors",
552
+ "model.layers.5.mlp.experts.31.down_proj.weight": "model-00003-of-00010.safetensors",
553
+ "model.layers.5.mlp.experts.31.gate_proj.weight": "model-00003-of-00010.safetensors",
554
+ "model.layers.5.mlp.experts.31.up_proj.weight": "model-00003-of-00010.safetensors",
555
+ "model.layers.5.mlp.experts.4.down_proj.weight": "model-00002-of-00010.safetensors",
556
+ "model.layers.5.mlp.experts.4.gate_proj.weight": "model-00002-of-00010.safetensors",
557
+ "model.layers.5.mlp.experts.4.up_proj.weight": "model-00002-of-00010.safetensors",
558
+ "model.layers.5.mlp.experts.5.down_proj.weight": "model-00002-of-00010.safetensors",
559
+ "model.layers.5.mlp.experts.5.gate_proj.weight": "model-00002-of-00010.safetensors",
560
+ "model.layers.5.mlp.experts.5.up_proj.weight": "model-00002-of-00010.safetensors",
561
+ "model.layers.5.mlp.experts.6.down_proj.weight": "model-00002-of-00010.safetensors",
562
+ "model.layers.5.mlp.experts.6.gate_proj.weight": "model-00002-of-00010.safetensors",
563
+ "model.layers.5.mlp.experts.6.up_proj.weight": "model-00002-of-00010.safetensors",
564
+ "model.layers.5.mlp.experts.7.down_proj.weight": "model-00002-of-00010.safetensors",
565
+ "model.layers.5.mlp.experts.7.gate_proj.weight": "model-00002-of-00010.safetensors",
566
+ "model.layers.5.mlp.experts.7.up_proj.weight": "model-00002-of-00010.safetensors",
567
+ "model.layers.5.mlp.experts.8.down_proj.weight": "model-00002-of-00010.safetensors",
568
+ "model.layers.5.mlp.experts.8.gate_proj.weight": "model-00002-of-00010.safetensors",
569
+ "model.layers.5.mlp.experts.8.up_proj.weight": "model-00002-of-00010.safetensors",
570
+ "model.layers.5.mlp.experts.9.down_proj.weight": "model-00002-of-00010.safetensors",
571
+ "model.layers.5.mlp.experts.9.gate_proj.weight": "model-00002-of-00010.safetensors",
572
+ "model.layers.5.mlp.experts.9.up_proj.weight": "model-00002-of-00010.safetensors",
573
+ "model.layers.5.mlp.gate.weight": "model-00001-of-00010.safetensors",
574
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
575
+ "model.layers.5.pre_extra_mlp_layernorm.weight": "model-00003-of-00010.safetensors",
576
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
577
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
578
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
579
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
580
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00010.safetensors",
581
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
582
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
583
+ "model.layers.6.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
584
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
585
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
586
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
587
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
588
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
589
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
590
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
591
+ "model.layers.7.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
592
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
593
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
594
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
595
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
596
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
597
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
598
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
599
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
600
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
601
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
602
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
603
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
604
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
605
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
606
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
607
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
608
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
609
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
610
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
611
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
612
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
613
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
614
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
615
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
616
+ "model.norm.weight": "model-00010-of-00010.safetensors"
617
+ }
618
+ }
modeling_hf_openmoe.py ADDED
@@ -0,0 +1,1121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch OpenMoE model."""
21
+ import math
22
+ from typing import List, Union
23
+ from typing import Optional, Tuple
24
+
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import functional as F
29
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
30
+ from transformers.modeling_utils import PreTrainedModel
31
+ from transformers.utils import (
32
+ add_start_docstrings,
33
+ add_start_docstrings_to_model_forward,
34
+ logging,
35
+ replace_return_docstrings,
36
+ )
37
+
38
+ # from .llama_attn import LlamaAttention
39
+ from .configuration_hf_openmoe import HFOpenMoeConfig
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+ _CONFIG_FOR_DOC = "HFOpenMoeConfig"
44
+
45
+
46
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
47
+ def _make_causal_mask(
48
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
49
+ ):
50
+ """
51
+ Make causal mask used for bi-directional self-attention.
52
+ """
53
+ bsz, tgt_len = input_ids_shape
54
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
55
+ mask_cond = torch.arange(mask.size(-1), device=device)
56
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
57
+ mask = mask.to(dtype)
58
+
59
+ if past_key_values_length > 0:
60
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
61
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
62
+
63
+
64
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
65
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
66
+ """
67
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
68
+ """
69
+ bsz, src_len = mask.size()
70
+ tgt_len = tgt_len if tgt_len is not None else src_len
71
+
72
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
73
+
74
+ inverted_mask = 1.0 - expanded_mask
75
+
76
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
77
+
78
+
79
+ def apply_rotary_embedding(q, k, cos, sin, decode=False, rotary_index=None):
80
+ # q: (bs, q_len, num_heads, head_dim)
81
+ # k: (bs, q_len [+past_kv_len], num_heads, head_dim)
82
+ # cos: (max_seq_len, head_dim)
83
+ # sin: (max_seq_len, head_dim)
84
+ # rotary_index: (bs, 1) # only used during decoding, when one query token is input at a time
85
+ """Helper function to apply Rotary Embeddings."""
86
+ cos = cos.to(q.dtype)
87
+ sin = sin.to(q.dtype)
88
+
89
+ if len(k.shape) == 3: # for multi query attention
90
+ k = k.unsqueeze(2)
91
+ multiquery = True
92
+ else:
93
+ multiquery = False
94
+
95
+ batch, qlen, qheads, d = q.shape
96
+ kbatch, klen, kheads, kd = k.shape
97
+ assert batch == kbatch, f"{batch} != {kbatch}"
98
+ assert d == kd, f"{d} != {kd}"
99
+ if decode and qlen == 1 and rotary_index is not None:
100
+ qcos = cos[rotary_index, :] # (bs, 1, head_dim)
101
+ qsin = sin[rotary_index, :] # (bs, 1, head_dim)
102
+ qcos = qcos.unsqueeze(2) # (bs, q_len=1, 1, head_dim) # broadcast to all heads
103
+ qsin = qsin.unsqueeze(2) # (bs, q_len=1, 1, head_dim)
104
+ else:
105
+ qcos, qsin = cos[:qlen, :], sin[:qlen, :] # (q_len, head_dim)
106
+ qcos = qcos.unsqueeze(0).unsqueeze(2) # (1, q_len, 1, head_dim)
107
+ qsin = qsin.unsqueeze(0).unsqueeze(2)
108
+
109
+ kcos, ksin = cos[:klen, :], sin[:klen, :] # (k_len, head_dim)
110
+ kcos = kcos.unsqueeze(0).unsqueeze(
111
+ 2) # (1, k_len, 1, head_dim) # broadcast to the whole batch, broadcast to all heads
112
+ ksin = ksin.unsqueeze(0).unsqueeze(2) # (1, k_len, 1, head_dim)
113
+ out_q = (q * qcos) + (rotate_half(q) * qsin)
114
+ out_k = (k * kcos) + (rotate_half(k) * ksin)
115
+
116
+ if multiquery:
117
+ out_k = out_k.squeeze(2)
118
+
119
+ return out_q, out_k
120
+
121
+
122
+ def rotate_half(x):
123
+ """Rotates half the hidden dims of the input."""
124
+ x1 = x[..., : x.shape[-1] // 2]
125
+ x2 = x[..., x.shape[-1] // 2:]
126
+ return torch.cat((-x2, x1), dim=-1)
127
+
128
+
129
+ class LlamaRMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ LlamaRMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ def swiglu_act_fn(x):
147
+ """Gated linear unit activation function.
148
+ Args:
149
+ x : input array
150
+ axis: the axis along which the split should be computed (default: -1)
151
+ """
152
+ size = x.shape[-1]
153
+ assert size % 2 == 0, "axis size must be divisible by 2"
154
+ x1, x2 = torch.split(x, size // 2, -1)
155
+ return x1 * (x2 * torch.sigmoid(x2))
156
+
157
+
158
+ class HFOpenMoeMLP(torch.nn.Module):
159
+ def __init__(self, config: HFOpenMoeConfig):
160
+ super().__init__()
161
+ assert config.hidden_act == "swiglu"
162
+ self.ffn_dim = config.intermediate_size
163
+ self.hidden_dim = config.hidden_size
164
+
165
+ self.gate_proj = nn.Linear(self.hidden_dim, self.ffn_dim * 2, bias=False)
166
+ self.up_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
167
+ self.down_proj = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
168
+
169
+ def forward(self, hidden_states):
170
+ return self.down_proj(swiglu_act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
171
+
172
+
173
+ def moe_cumsum(inputs: torch.Tensor):
174
+ return torch.cumsum(inputs, dim=0) - 1
175
+
176
+
177
+ class HFOpenMoeTop2Router(torch.nn.Module):
178
+ def __init__(self, config: HFOpenMoeConfig):
179
+ super().__init__()
180
+ assert config.router_topk == 2
181
+ self.k_value = 2
182
+ self.capacity_factor_train = config.router_capacity_factor_train
183
+ self.capacity_factor_eval = config.router_capacity_factor_eval
184
+ self.min_capacity = config.router_min_capacity
185
+ self.drop_tks = config.router_drop_tks
186
+
187
+ def get_capacity(self, logits_shape):
188
+ capacity_factor = self.capacity_factor_train if self.training else self.capacity_factor_eval
189
+ capacity = math.floor(self.k_value * capacity_factor * logits_shape[-2] / logits_shape[-1])
190
+ capacity += capacity % 2
191
+ capacity = max(capacity, self.min_capacity)
192
+ assert capacity > 0
193
+ return int(capacity)
194
+
195
+ def forward(self, inputs: torch.Tensor) -> Tuple:
196
+ assert inputs.dtype == torch.float, "Router input should be FP32"
197
+
198
+ probs = F.softmax(inputs, dim=-1)
199
+ num_experts = probs.size(-1)
200
+ capacity = self.get_capacity(inputs.shape)
201
+
202
+ top1_idx = torch.argmax(probs, dim=-1)
203
+ mask1 = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32)
204
+ logits_except1 = probs.masked_fill(mask1.bool(), float("-inf"))
205
+ top2_idx = torch.argmax(logits_except1, dim=-1)
206
+ mask2 = F.one_hot(top2_idx, num_classes=num_experts).to(torch.int32)
207
+
208
+ rank1 = moe_cumsum(mask1) # rank1: [s, e]
209
+ rank2 = moe_cumsum(mask2)
210
+ rank2 += torch.sum(mask1, dim=-2, keepdim=True)
211
+
212
+ mask1 *= torch.lt(rank1, capacity)
213
+ mask2 *= torch.lt(rank2, capacity)
214
+ used_capacity = mask1.sum(dim=0) + mask2.sum(dim=0)
215
+
216
+ rank1 = torch.sum(mask1 * rank1, dim=-1)
217
+ rank2 = torch.sum(mask2 * rank2, dim=-1)
218
+
219
+ weight1 = mask1 * probs.type_as(inputs)
220
+ weight2 = mask2 * probs.type_as(inputs)
221
+
222
+ cb_weight = torch.zeros(inputs.shape + (capacity,), device=inputs.device)
223
+ sec_mask = torch.zeros_like(cb_weight, dtype=torch.bool)
224
+ indices = torch.arange(0, inputs.shape[0], device=inputs.device)
225
+ cb_weight[indices, top1_idx[indices], rank1[indices]] += weight1[indices, top1_idx[indices]]
226
+ cb_weight[indices, top2_idx[indices], rank2[indices]] += weight2[indices, top2_idx[indices]]
227
+ sec_mask[indices, top1_idx[indices], rank1[indices]] |= mask1.bool()[indices, top1_idx[indices]]
228
+ sec_mask[indices, top2_idx[indices], rank2[indices]] |= mask2.bool()[indices, top2_idx[indices]]
229
+
230
+ return used_capacity, cb_weight, sec_mask
231
+
232
+
233
+ class HFOpenMoeSparseMLP(torch.nn.Module):
234
+ def __init__(self, config: HFOpenMoeConfig):
235
+ super().__init__()
236
+ self.hidden_size = config.hidden_size
237
+ self.intermediate_size = config.intermediate_size
238
+ self.num_experts = config.num_experts
239
+
240
+ self.gate = torch.nn.Linear(self.hidden_size, config.num_experts, bias=False)
241
+
242
+ self.experts = nn.ModuleList([HFOpenMoeMLP(config) for _ in range(self.num_experts)])
243
+ self.router = HFOpenMoeTop2Router(config)
244
+
245
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
246
+ # reshape the input tokens
247
+ tokens = hidden_states.reshape(-1, self.hidden_size)
248
+ inputs = hidden_states
249
+
250
+ # the data type of the inputs in the gating should be fp32
251
+ fp32_input = tokens.to(torch.float)
252
+ self.gate = self.gate.to(torch.float)
253
+ gate_output = self.gate(fp32_input)
254
+
255
+ used_capacity, *route_result_list = self.router(inputs=gate_output)
256
+
257
+ sec_mask_f = route_result_list[1].type_as(inputs)
258
+ dispatch_data = torch.matmul(sec_mask_f.permute(1, 2, 0), tokens)
259
+
260
+ expert_output = self._local_process(dispatch_data)
261
+
262
+ combine_weights = route_result_list[0].type_as(inputs)
263
+ combine_weights = combine_weights.view(combine_weights.shape[0], -1)
264
+ expert_output = expert_output.view(-1, expert_output.shape[-1])
265
+ ans = torch.matmul(combine_weights, expert_output)
266
+
267
+ ans = ans.reshape(inputs.shape)
268
+ return ans
269
+
270
+ def _local_process(self, expert_in: torch.Tensor) -> torch.Tensor:
271
+ expert_in = expert_in.unsqueeze(0)
272
+ x = expert_in
273
+
274
+ # Copied from colossalai MLPExperts class
275
+ e = x.size(1)
276
+ h = x.size(-1)
277
+
278
+ x = x.transpose(0, 1)
279
+ inshape = x.shape
280
+ x = x.reshape(e, -1, h)
281
+
282
+ x = [self.experts[i](x[i]) for i in range(e)]
283
+
284
+ x = torch.cat([x[i].unsqueeze(0) for i in range(e)], dim=0)
285
+ x = x.reshape(inshape)
286
+ x = x.transpose(0, 1).contiguous()
287
+
288
+ expert_out = x
289
+ return expert_out
290
+
291
+
292
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
293
+ """
294
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
295
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
296
+ """
297
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
298
+ if n_rep == 1:
299
+ return hidden_states
300
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
301
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
302
+
303
+
304
+ class HFOpenMoeAttention(nn.Module):
305
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
306
+
307
+ def __init__(self, config: HFOpenMoeConfig):
308
+ super().__init__()
309
+ self.config = config
310
+ self.hidden_size = config.hidden_size
311
+ self.num_heads = config.num_attention_heads
312
+ self.head_dim = config.head_dim
313
+ self.num_key_value_heads = config.num_key_value_heads
314
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
315
+ self.pretraining_tp = config.pretraining_tp
316
+ self.max_position_embeddings = config.max_position_embeddings
317
+
318
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
319
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
320
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
321
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
322
+ self.generate_fixed_pos_embedding(self.head_dim, self.max_position_embeddings, 1.0, 1e4)
323
+ self.use_kernel = config.enable_kernel
324
+
325
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
326
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
327
+
328
+ def generate_fixed_pos_embedding(self, features, length, min_timescale=1.0, max_timescale=10000.0):
329
+ """Generate Sin/Cos for Rotary Embeddings.
330
+
331
+ Args:
332
+ features: an integer
333
+ length: an integer
334
+ min_timescale: an optional float
335
+ max_timescale: an optional float
336
+
337
+ Returns:
338
+ output_sin: a float32 Tensor with shape [length, features]
339
+ output_cos: a float32 Tensor with shape [length, features]
340
+ """
341
+ fraction = torch.arange(0, features, 2, dtype=torch.float32) / features
342
+ timescale = min_timescale * (max_timescale / min_timescale) ** fraction
343
+ rotational_frequency = 1.0 / timescale
344
+
345
+ sinusoid_inp = torch.einsum("i,j->ij", torch.arange(length, dtype=torch.float32), rotational_frequency)
346
+
347
+ sinusoid_inp = torch.cat([sinusoid_inp, sinusoid_inp], dim=-1)
348
+
349
+ self.register_buffer('sin', torch.sin(sinusoid_inp),
350
+ persistent=False) # persistent=False --> buffer won't appear in the state_dict
351
+ self.register_buffer('cos', torch.cos(sinusoid_inp), persistent=False)
352
+
353
+ def forward(
354
+ self,
355
+ hidden_states: torch.Tensor,
356
+ attention_mask: Optional[torch.Tensor] = None,
357
+ position_ids: Optional[torch.LongTensor] = None,
358
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
359
+ output_attentions: bool = False,
360
+ use_cache: bool = False,
361
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
362
+ bsz, q_len, _ = hidden_states.size()
363
+
364
+ if self.pretraining_tp > 1:
365
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
366
+ query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
367
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
368
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
369
+
370
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
371
+ query_states = torch.cat(query_states, dim=-1)
372
+
373
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
374
+ key_states = torch.cat(key_states, dim=-1)
375
+
376
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
377
+ value_states = torch.cat(value_states, dim=-1)
378
+
379
+ else:
380
+ query_states = self.q_proj(hidden_states)
381
+ key_states = self.k_proj(hidden_states)
382
+ value_states = self.v_proj(hidden_states)
383
+
384
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
385
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
386
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
387
+
388
+ kv_seq_len = key_states.shape[-2]
389
+ if past_key_value is not None:
390
+ kv_seq_len += past_key_value[0].shape[-2]
391
+ # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
392
+ # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
393
+ if past_key_value is not None:
394
+ # reuse k, v, self_attention
395
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
396
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
397
+
398
+ past_key_value = (key_states, value_states) if use_cache else None
399
+
400
+ query_states = query_states.transpose(1, 2)
401
+ key_states = key_states.transpose(1, 2)
402
+ max_length = max(query_states.shape[1], key_states.shape[1])
403
+ assert max_length <= self.sin.shape[0]
404
+ sin, cos = self.sin[:max_length], self.cos[:max_length]
405
+ # TODO: for inference, we can add emb kv into cache to avoid computation
406
+ query_states, key_states = apply_rotary_embedding(
407
+ query_states, key_states, cos, sin, decode=True if q_len == 1 else False, rotary_index=position_ids
408
+ )
409
+ query_states = query_states.transpose(1, 2)
410
+ key_states = key_states.transpose(1, 2)
411
+
412
+ # repeat k/v heads if n_kv_heads < n_heads
413
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
414
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
415
+
416
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
417
+
418
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
419
+ raise ValueError(
420
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
421
+ f" {attn_weights.size()}"
422
+ )
423
+
424
+ if attention_mask is not None:
425
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
426
+ raise ValueError(
427
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
428
+ )
429
+ if self.training:
430
+ attention_mask = attention_mask.clone().detach()
431
+ attention_mask[:, :, :, 0] = 0
432
+ attn_weights = attn_weights + attention_mask
433
+
434
+ # upcast attention to fp32
435
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
436
+ attn_output = torch.matmul(attn_weights, value_states)
437
+
438
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
439
+ raise ValueError(
440
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
441
+ f" {attn_output.size()}"
442
+ )
443
+
444
+ attn_output = attn_output.transpose(1, 2).contiguous()
445
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
446
+
447
+ if self.pretraining_tp > 1:
448
+ attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
449
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
450
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
451
+ else:
452
+ attn_output = self.o_proj(attn_output)
453
+
454
+ if not output_attentions:
455
+ attn_weights = None
456
+
457
+ return attn_output, attn_weights, past_key_value
458
+
459
+
460
+ class HFOpenMoeDecoderLayer(nn.Module):
461
+ def __init__(self, config: HFOpenMoeConfig, moe: bool):
462
+ super().__init__()
463
+ self.hidden_size = config.hidden_size
464
+ self.moe = moe
465
+ self.self_attn = HFOpenMoeAttention(config=config)
466
+ # self.self_attn = LlamaAttention(config=config) # TODO: introduce LLaMA Positional Encoding
467
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
468
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
469
+ if self.moe:
470
+ self.mlp = HFOpenMoeSparseMLP(config)
471
+ self.pre_extra_mlp_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
472
+ self.extra_mlp = HFOpenMoeMLP(config)
473
+ else:
474
+ self.mlp = HFOpenMoeMLP(config)
475
+
476
+ def forward(
477
+ self,
478
+ hidden_states: torch.Tensor,
479
+ attention_mask: Optional[torch.Tensor] = None,
480
+ position_ids: Optional[torch.LongTensor] = None,
481
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
482
+ output_attentions: Optional[bool] = False,
483
+ use_cache: Optional[bool] = False,
484
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
485
+ """
486
+ Args:
487
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
488
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
489
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
490
+ output_attentions (`bool`, *optional*):
491
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
492
+ returned tensors for more detail.
493
+ use_cache (`bool`, *optional*):
494
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
495
+ (see `past_key_values`).
496
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
497
+ """
498
+
499
+ residual = hidden_states
500
+
501
+ hidden_states = self.input_layernorm(hidden_states)
502
+
503
+ # Self Attention
504
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
505
+ hidden_states=hidden_states,
506
+ attention_mask=attention_mask,
507
+ position_ids=position_ids,
508
+ past_key_value=past_key_value,
509
+ output_attentions=output_attentions,
510
+ use_cache=use_cache,
511
+ )
512
+ hidden_states = residual + hidden_states
513
+
514
+ # Fully Connected
515
+ residual = hidden_states
516
+ hidden_states = self.post_attention_layernorm(hidden_states)
517
+ hidden_states = self.mlp(hidden_states)
518
+ hidden_states = residual + hidden_states
519
+
520
+ if self.moe:
521
+ residual = hidden_states
522
+ hidden_states = self.pre_extra_mlp_layernorm(hidden_states)
523
+ hidden_states = self.extra_mlp(hidden_states)
524
+ hidden_states = residual + hidden_states
525
+
526
+ outputs = (hidden_states,)
527
+
528
+ if output_attentions:
529
+ outputs += (self_attn_weights,)
530
+
531
+ if use_cache:
532
+ outputs += (present_key_value,)
533
+
534
+ return outputs
535
+
536
+
537
+ LLAMA_START_DOCSTRING = r"""
538
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
539
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
540
+ etc.)
541
+
542
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
543
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
544
+ and behavior.
545
+
546
+ Parameters:
547
+ config ([`HFOpenMoeConfig`]):
548
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
549
+ load the weights associated with the model, only the configuration. Check out the
550
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
551
+ """
552
+
553
+
554
+ @add_start_docstrings(
555
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
556
+ LLAMA_START_DOCSTRING,
557
+ )
558
+ class HFOpenMoePreTrainedModel(PreTrainedModel):
559
+ config_class = HFOpenMoeConfig
560
+ base_model_prefix = "model"
561
+ supports_gradient_checkpointing = True
562
+ _no_split_modules = ["HFOpenMoeDecoderLayer"]
563
+ _skip_keys_device_placement = "past_key_values"
564
+
565
+ def _init_weights(self, module):
566
+ std = self.config.initializer_range
567
+ if isinstance(module, nn.Linear):
568
+ module.weight.data.normal_(mean=0.0, std=std)
569
+ if module.bias is not None:
570
+ module.bias.data.zero_()
571
+ elif isinstance(module, nn.Embedding):
572
+ module.weight.data.normal_(mean=0.0, std=std)
573
+ if module.padding_idx is not None:
574
+ module.weight.data[module.padding_idx].zero_()
575
+
576
+ def _set_gradient_checkpointing(self, module, value=False):
577
+ if isinstance(module, HFOpenMoeModel):
578
+ module.gradient_checkpointing = value
579
+
580
+
581
+ LLAMA_INPUTS_DOCSTRING = r"""
582
+ Args:
583
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
584
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
585
+ it.
586
+
587
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
588
+ [`PreTrainedTokenizer.__call__`] for details.
589
+
590
+ [What are input IDs?](../glossary#input-ids)
591
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
592
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
593
+
594
+ - 1 for tokens that are **not masked**,
595
+ - 0 for tokens that are **masked**.
596
+
597
+ [What are attention masks?](../glossary#attention-mask)
598
+
599
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
600
+ [`PreTrainedTokenizer.__call__`] for details.
601
+
602
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
603
+ `past_key_values`).
604
+
605
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
606
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
607
+ information on the default strategy.
608
+
609
+ - 1 indicates the head is **not masked**,
610
+ - 0 indicates the head is **masked**.
611
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
612
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
613
+ config.n_positions - 1]`.
614
+
615
+ [What are position IDs?](../glossary#position-ids)
616
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
617
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
618
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
619
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
620
+
621
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
622
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
623
+
624
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
625
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
626
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
627
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
628
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
629
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
630
+ model's internal embedding lookup matrix.
631
+ use_cache (`bool`, *optional*):
632
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
633
+ `past_key_values`).
634
+ output_attentions (`bool`, *optional*):
635
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
636
+ tensors for more detail.
637
+ output_hidden_states (`bool`, *optional*):
638
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
639
+ more detail.
640
+ return_dict (`bool`, *optional*):
641
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
642
+ """
643
+
644
+
645
+ @add_start_docstrings(
646
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
647
+ LLAMA_START_DOCSTRING,
648
+ )
649
+ class HFOpenMoeModel(HFOpenMoePreTrainedModel):
650
+ """
651
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
652
+
653
+ Args:
654
+ config: HFOpenMoeConfig
655
+ """
656
+
657
+ def __init__(self, config: HFOpenMoeConfig):
658
+ super().__init__(config)
659
+ self.padding_idx = config.pad_token_id
660
+ self.vocab_size = config.vocab_size
661
+
662
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
663
+ self.layers = nn.ModuleList(
664
+ [
665
+ HFOpenMoeDecoderLayer(config, moe=True if (i + 1) % config.moe_layer_interval == 0 else False)
666
+ for i in range(config.num_hidden_layers)
667
+ ]
668
+ )
669
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
670
+
671
+ self.gradient_checkpointing = False
672
+ # Initialize weights and apply final processing
673
+ self.post_init()
674
+
675
+ def get_input_embeddings(self):
676
+ return self.embed_tokens
677
+
678
+ def set_input_embeddings(self, value):
679
+ self.embed_tokens = value
680
+
681
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
682
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
683
+ # create causal mask
684
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
685
+ combined_attention_mask = None
686
+ if input_shape[-1] > 1:
687
+ combined_attention_mask = _make_causal_mask(
688
+ input_shape,
689
+ inputs_embeds.dtype,
690
+ device=inputs_embeds.device,
691
+ past_key_values_length=past_key_values_length,
692
+ )
693
+
694
+ if attention_mask is not None:
695
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
696
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
697
+ inputs_embeds.device
698
+ )
699
+ combined_attention_mask = (
700
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
701
+ )
702
+
703
+ return combined_attention_mask
704
+
705
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
706
+ def forward(
707
+ self,
708
+ input_ids: torch.LongTensor = None,
709
+ attention_mask: Optional[torch.Tensor] = None,
710
+ position_ids: Optional[torch.LongTensor] = None,
711
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
712
+ inputs_embeds: Optional[torch.FloatTensor] = None,
713
+ use_cache: Optional[bool] = None,
714
+ output_attentions: Optional[bool] = None,
715
+ output_hidden_states: Optional[bool] = None,
716
+ return_dict: Optional[bool] = None,
717
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
718
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
719
+ output_hidden_states = (
720
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
721
+ )
722
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
723
+
724
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
725
+
726
+ # retrieve input_ids and inputs_embeds
727
+ if input_ids is not None and inputs_embeds is not None:
728
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
729
+ elif input_ids is not None:
730
+ batch_size, seq_length = input_ids.shape
731
+ elif inputs_embeds is not None:
732
+ batch_size, seq_length, _ = inputs_embeds.shape
733
+ else:
734
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
735
+
736
+ seq_length_with_past = seq_length
737
+ past_key_values_length = 0
738
+
739
+ if past_key_values is not None:
740
+ past_key_values_length = past_key_values[0][0].shape[2]
741
+ seq_length_with_past = seq_length_with_past + past_key_values_length
742
+
743
+ if position_ids is None:
744
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
745
+ position_ids = torch.arange(
746
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
747
+ )
748
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
749
+ else:
750
+ position_ids = position_ids.view(-1, seq_length).long()
751
+
752
+ if inputs_embeds is None:
753
+ inputs_embeds = self.embed_tokens(input_ids)
754
+ # embed positions
755
+ if attention_mask is None:
756
+ attention_mask = torch.ones(
757
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
758
+ )
759
+ attention_mask = self._prepare_decoder_attention_mask(
760
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
761
+ )
762
+
763
+ hidden_states = inputs_embeds
764
+
765
+ if self.gradient_checkpointing and self.training:
766
+ if use_cache:
767
+ logger.warning_once(
768
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
769
+ )
770
+ use_cache = False
771
+
772
+ # decoder layers
773
+ all_hidden_states = () if output_hidden_states else None
774
+ all_self_attns = () if output_attentions else None
775
+ next_decoder_cache = () if use_cache else None
776
+
777
+ for idx, decoder_layer in enumerate(self.layers):
778
+ if output_hidden_states:
779
+ all_hidden_states += (hidden_states,)
780
+
781
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
782
+
783
+ if self.gradient_checkpointing and self.training:
784
+
785
+ def create_custom_forward(module):
786
+ def custom_forward(*inputs):
787
+ # None for past_key_value
788
+ return module(*inputs, output_attentions, None)
789
+
790
+ return custom_forward
791
+
792
+ layer_outputs = torch.utils.checkpoint.checkpoint(
793
+ create_custom_forward(decoder_layer),
794
+ hidden_states,
795
+ attention_mask,
796
+ position_ids,
797
+ None,
798
+ )
799
+ else:
800
+ layer_outputs = decoder_layer(
801
+ hidden_states,
802
+ attention_mask=attention_mask,
803
+ position_ids=position_ids,
804
+ past_key_value=past_key_value,
805
+ output_attentions=output_attentions,
806
+ use_cache=use_cache,
807
+ )
808
+
809
+ hidden_states = layer_outputs[0]
810
+
811
+ if use_cache:
812
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
813
+
814
+ if output_attentions:
815
+ all_self_attns += (layer_outputs[1],)
816
+
817
+ hidden_states = self.norm(hidden_states)
818
+
819
+ # add hidden states from the last decoder layer
820
+ if output_hidden_states:
821
+ all_hidden_states += (hidden_states,)
822
+
823
+ next_cache = next_decoder_cache if use_cache else None
824
+ if not return_dict:
825
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
826
+ return BaseModelOutputWithPast(
827
+ last_hidden_state=hidden_states,
828
+ past_key_values=next_cache,
829
+ hidden_states=all_hidden_states,
830
+ attentions=all_self_attns,
831
+ )
832
+
833
+
834
+ class HFOpenMoeForCausalLM(HFOpenMoePreTrainedModel):
835
+ # _tied_weights_keys = ["lm_head.weight"]
836
+
837
+ def __init__(self, config):
838
+ super().__init__(config)
839
+ self.model = HFOpenMoeModel(config)
840
+ self.pretraining_tp = config.pretraining_tp
841
+ self.vocab_size = config.vocab_size
842
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
843
+
844
+ # Initialize weights and apply final processing
845
+ self.post_init()
846
+
847
+ def get_input_embeddings(self):
848
+ return self.model.embed_tokens
849
+
850
+ def set_input_embeddings(self, value):
851
+ self.model.embed_tokens = value
852
+
853
+ def get_output_embeddings(self):
854
+ return self.lm_head
855
+
856
+ def set_output_embeddings(self, new_embeddings):
857
+ self.lm_head = new_embeddings
858
+
859
+ def set_decoder(self, decoder):
860
+ self.model = decoder
861
+
862
+ def get_decoder(self):
863
+ return self.model
864
+
865
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
866
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
867
+ def forward(
868
+ self,
869
+ input_ids: torch.LongTensor = None,
870
+ attention_mask: Optional[torch.Tensor] = None,
871
+ position_ids: Optional[torch.LongTensor] = None,
872
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
873
+ inputs_embeds: Optional[torch.FloatTensor] = None,
874
+ labels: Optional[torch.LongTensor] = None,
875
+ use_cache: Optional[bool] = None,
876
+ output_attentions: Optional[bool] = None,
877
+ output_hidden_states: Optional[bool] = None,
878
+ return_dict: Optional[bool] = None,
879
+ chunk_head: Optional[bool] = True,
880
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
881
+ r"""
882
+ Args:
883
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
884
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
885
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
886
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
887
+
888
+ Returns:
889
+
890
+ Example:
891
+
892
+ ```python
893
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
894
+
895
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
896
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
897
+
898
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
899
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
900
+
901
+ >>> # Generate
902
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
903
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
904
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
905
+ ```"""
906
+ # reset moe loss
907
+
908
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
909
+ output_hidden_states = (
910
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
911
+ )
912
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
913
+
914
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
915
+ outputs = self.model(
916
+ input_ids=input_ids,
917
+ attention_mask=attention_mask,
918
+ position_ids=position_ids,
919
+ past_key_values=past_key_values,
920
+ inputs_embeds=inputs_embeds,
921
+ use_cache=use_cache,
922
+ output_attentions=output_attentions,
923
+ output_hidden_states=output_hidden_states,
924
+ return_dict=return_dict,
925
+ )
926
+
927
+ hidden_states = outputs[0]
928
+ if self.pretraining_tp > 1:
929
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.pretraining_tp, dim=0)
930
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp)]
931
+ logits = torch.cat(logits, dim=-1)
932
+
933
+ loss = None
934
+ # if no training, just do forward
935
+ if labels is None:
936
+ logits = self.lm_head(hidden_states)
937
+ logits = logits.float()
938
+ # the vocab size for openmoe is 30w+
939
+ # which causes great activation memory in training, up to 20G for one sequence
940
+ # so we use chunk and checkpoint to reduce memory
941
+ else:
942
+ if chunk_head == True:
943
+
944
+ def create_custom_forward(module):
945
+ def custom_forward(*inputs):
946
+ logits = module(inputs[0])
947
+ logits = logits.float()
948
+ # Shift so that tokens < n predict n
949
+ shift_logits = logits[..., :-1, :].contiguous().float()
950
+ shift_labels = inputs[1][..., 1:].contiguous()
951
+ # Flatten the tokens
952
+ loss = self._calculate_loss(shift_logits, shift_labels)
953
+ return loss
954
+
955
+ return custom_forward
956
+
957
+ for batch_idx in range(hidden_states.shape[0]):
958
+ loss = loss + torch.utils.checkpoint.checkpoint(
959
+ create_custom_forward(self.lm_head),
960
+ hidden_states[batch_idx: batch_idx + 1, :],
961
+ labels[batch_idx: batch_idx + 1, :],
962
+ ) if loss is not None else torch.utils.checkpoint.checkpoint(
963
+ create_custom_forward(self.lm_head),
964
+ hidden_states[batch_idx: batch_idx + 1, :],
965
+ labels[batch_idx: batch_idx + 1, :],
966
+ )
967
+ logits = None
968
+ else:
969
+ logits = self.lm_head(hidden_states)
970
+ logits = logits.float()
971
+ # Shift so that tokens < n predict n
972
+ shift_logits = logits[..., :-1, :].contiguous()
973
+ shift_labels = labels[..., 1:].contiguous()
974
+ # Flatten the tokens
975
+ loss = self._calculate_loss(shift_logits, shift_labels)
976
+
977
+ if not return_dict:
978
+ output = (logits,) + outputs[1:]
979
+ return (loss,) + output if loss is not None else output
980
+
981
+ return CausalLMOutputWithPast(
982
+ loss=loss,
983
+ logits=logits,
984
+ past_key_values=outputs.past_key_values,
985
+ hidden_states=outputs.hidden_states,
986
+ attentions=outputs.attentions,
987
+ )
988
+
989
+ def prepare_inputs_for_generation(
990
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
991
+ ):
992
+ if past_key_values:
993
+ input_ids = input_ids[:, -1:]
994
+
995
+ position_ids = kwargs.get("position_ids", None)
996
+ if attention_mask is not None and position_ids is None:
997
+ # create position_ids on the fly for batch generation
998
+ position_ids = attention_mask.long().cumsum(-1) - 1
999
+ position_ids.masked_fill_(attention_mask == 0, 1)
1000
+ if past_key_values:
1001
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1002
+
1003
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1004
+ if inputs_embeds is not None and past_key_values is None:
1005
+ model_inputs = {"inputs_embeds": inputs_embeds}
1006
+ else:
1007
+ model_inputs = {"input_ids": input_ids}
1008
+
1009
+ model_inputs.update(
1010
+ {
1011
+ "position_ids": position_ids,
1012
+ "past_key_values": past_key_values,
1013
+ "use_cache": kwargs.get("use_cache"),
1014
+ "attention_mask": attention_mask,
1015
+ }
1016
+ )
1017
+ return model_inputs
1018
+
1019
+ @staticmethod
1020
+ def _reorder_cache(past_key_values, beam_idx):
1021
+ reordered_past = ()
1022
+ for layer_past in past_key_values:
1023
+ reordered_past += (
1024
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1025
+ )
1026
+ return reordered_past
1027
+
1028
+ def _calculate_loss(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
1029
+ """Compute cross entropy and entropy for log probs and targets.
1030
+
1031
+ Args:
1032
+ logits: [batch, length, num_classes] float array.
1033
+ targets: categorical targets [batch, length] int array.
1034
+
1035
+ Returns:
1036
+ Tuple of scalar loss.
1037
+ """
1038
+ if len(logits.shape) != len(targets.shape) + 1:
1039
+ raise ValueError(
1040
+ "Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))
1041
+ )
1042
+ vocab_size = logits.shape[-1]
1043
+ confidence = 1.0 - self.config.label_smoothing
1044
+ low_confidence = (1.0 - confidence) / (vocab_size - 1)
1045
+ normalizing_constant = -(
1046
+ confidence * math.log(confidence) + (vocab_size - 1) * low_confidence * math.log(low_confidence + 1e-20)
1047
+ )
1048
+
1049
+ # one hot
1050
+ soft_targets = targets[..., None] == torch.arange(vocab_size, device=targets.device).reshape(
1051
+ (1,) * len(targets.shape) + (-1,)
1052
+ )
1053
+ soft_targets = torch.where(
1054
+ soft_targets, torch.full_like(soft_targets, confidence), torch.full_like(soft_targets, low_confidence)
1055
+ )
1056
+ soft_targets = soft_targets.to(torch.float32)
1057
+
1058
+ # cross entropy
1059
+ total_loss = ZLossCrossEntropy.apply(logits, soft_targets, self.config.z_loss_factor)
1060
+ total_loss = total_loss - normalizing_constant
1061
+ total_loss = torch.mean(torch.sum(total_loss, dim=-1), dim=0)
1062
+ return total_loss
1063
+
1064
+
1065
+ class ZLossCrossEntropy(torch.autograd.Function):
1066
+ """Computes cross entropy loss with stable custom gradient.
1067
+
1068
+ Computes a stabilized-gradient version of:
1069
+ -jnp.sum(targets * nn.log_softmax(logits), axis=-1)
1070
+
1071
+ If z_loss > 0, then an auxiliary loss equal to z_loss*log(z)^2
1072
+ will be added to the cross entropy loss (z = softmax normalization constant).
1073
+ The two uses of z_loss are:
1074
+ 1. To keep the logits from drifting too far from zero, which can cause
1075
+ unacceptable roundoff errors in bfloat16.
1076
+ 2. To encourage the logits to be normalized log-probabilities.
1077
+
1078
+ Args:
1079
+ logits: [batch, length, num_classes] float array.
1080
+ targets: categorical one-hot targets [batch, length, num_classes] float
1081
+ array.
1082
+ z_loss: coefficient for auxilliary z-loss loss term.
1083
+
1084
+ Returns:
1085
+ tuple with the total loss and the z_loss, both
1086
+ float arrays with shape [batch, length].
1087
+ """
1088
+
1089
+ @staticmethod
1090
+ def forward(ctx, logits, targets, z_loss):
1091
+ max_logit = torch.max(logits, dim=-1, keepdim=True)[0]
1092
+ shifted = logits - max_logit
1093
+ exp_shifted = torch.exp(shifted)
1094
+ sum_exp = torch.sum(exp_shifted, axis=-1, keepdims=True)
1095
+ sum_exp_log = torch.log(sum_exp)
1096
+ log_softmax = shifted - sum_exp_log
1097
+ loss = -torch.sum(targets * log_softmax, axis=-1)
1098
+ # Add auxilliary z-loss term.
1099
+ log_z = torch.squeeze(sum_exp_log + max_logit, axis=-1)
1100
+ total_z_loss = z_loss * torch.square(log_z)
1101
+ loss += total_z_loss
1102
+ ctx.z_loss = z_loss
1103
+ ctx.save_for_backward(logits, targets, exp_shifted, sum_exp, log_softmax, log_z)
1104
+ return loss
1105
+
1106
+ @staticmethod
1107
+ def backward(ctx, *grad_outputs):
1108
+ assert len(grad_outputs) == 1
1109
+ g = grad_outputs[0]
1110
+ z_loss = ctx.z_loss
1111
+ logits, targets, exp_shifted, sum_exp, log_softmax, log_z = ctx.saved_tensors
1112
+ # z-loss term adds the (2 * z_loss * log_z) factor.
1113
+ deriv = (1 + 2 * z_loss * log_z).unsqueeze(-1) * exp_shifted / sum_exp - targets
1114
+ g_logits = g.unsqueeze(-1) * deriv
1115
+ g_targets = -g.unsqueeze(-1) * log_softmax
1116
+
1117
+ return (
1118
+ g_logits.to(logits.dtype),
1119
+ g_targets.to(targets.dtype),
1120
+ None,
1121
+ )
tokenization_hf_openmoe.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+
3
+ from transformers import T5Tokenizer
4
+
5
+
6
+ class HFOpenMoeTokenizer(T5Tokenizer):
7
+ def __init__(self, *args, **kwargs):
8
+ super().__init__(*args, **kwargs)
9
+ self.padding_side = 'left'
10
+ self.add_bos_token = True
11
+ self.add_eos_token = False
12
+
13
+ def build_inputs_with_special_tokens(
14
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
15
+ ) -> List[int]:
16
+ if self.add_eos_token:
17
+ token_ids_0 = self._add_eos_if_not_present(token_ids_0)
18
+ if self.add_bos_token:
19
+ token_ids_0 = [self.pad_token_id] + token_ids_0
20
+ if token_ids_1 is None:
21
+ return token_ids_0
22
+ else:
23
+ token_ids_1 = self._add_eos_if_not_present(token_ids_1)
24
+ return token_ids_0 + token_ids_1