
4xNomosWebPhoto
Dataset Creation Workflow

By Philip Hofmann



Use Case

4x upscaling an image that was downloaded from the web

Images from the web range from lossless good quality to downsampled and (re) 
compressed images for faster client web load speeds, while photography 
additionally could already be blurry and noisy before uploaded. This degradation 
workflow tries to simulate all of these cases so an upscaling model trained with it 
might be able to handle these use cases.



Use Case Visualization - A photo taken of me and a friend, uploaded and re-uploaded on the web (each time 
downscaled and compressed by the service provider). An upscale would ideally reach the original state again.



Dataset used: Nomos-v2
For this I use the Nomos-v2 dataset as released by musl on neosr and simple degrade it.

The Nomos-v2 dataset contains 6000 images of 512x512px each.

The purpose of this dataset is to distill only the best images from the academic and community datasets. A total of 14 datasets were 
manually reviewed, including: Adobe-MIT-5k, RAISE, LSDIR, LIU4k-v2, KONIQ, Nikon Low-Light RAW Image Dataset, DIV8k, FFHQ, 
Flickr2k, ModernAnimation1080, Rawsamples, SignatureEdits, Hasselblad raw samples and Unsplash. 

Raw images were processed on rawtherapee using prebayer deconvolution, AMaZe and CAM16 on AP1 color space. 

Downsampling was done using Mitchell interpolation and post RL deconvolution. 

The criteria for selection were:

● High signal-to-noise ratio (low noise)
● Diverse
● Sharp (no motion blur, shallow DOF allowed)
● Contains mixed and complex textures/shapes that cover most part of the image



Nomos-v2 distribution



Example of Nomos-v2 tiles / images (First 21 out of 6000)



Adding Blur

I am adding lens blur with either radius 2 or 3 as visualized below



Adding Noise

To add noise im using my self-trained Ludvae200 degradation model as released.

The noise im using is from 1 to 5 and the temperature is from 0.06 to 1.4

Below a visualization for the min and max, it applies the noise in a spectrum, Noise 3 Temp 
0.1 is just an example of a median noise it could apply in the dataset



Adding Compression

Since this is images from the web, im adding jpg and webp compression again in 
a randomized manner, below a visualization of the max compression.

For jpg i went with quality 70 as max, which I thought should suffice, since 
previews in the Google search for pictures are compressed with quality 74. And for 
webp I chose 72 to result in the (almost) same compressed file size.

I think this should suffice for most images (we normally get better quality if training 
on less degradation so i am trying to keep the max reasonable) unless they went 
extreme on compression strength. We are also going to add re-compression to the 
dataset which would help with more compressed images.



Visualization of Max Compression



Adding Re-Compression

To simulate the download and re-upload of an image from the web to a service 
provider, I add re-compression to the dataset with the same max strengths



12 Variants

- Unaltered upload
- Downscale
- Blur, downscale
- Noise, downscale
- Blur, noise, downscale

- Upload
- Downscale, compression
- Blur, downscale, compression
- Noise, downscale, compression
- Blur, noise, downscale, compression

- Re-Upload
- Downscale, compression, recompression
- Blur, downscale, compression, recompression
- Noise, downscale, compression, recompression
- Blur, noise, downscale, compression, recompression



Why Variants?

We are working with different degraded lr folders here because I want to simulate 
the different use cases.

The benefit here is that since we are using non-degraded inputs a trained model at 
the end should do also well on non-degraded, meaning good quality, input. Then 
blur only, then noise only, blur and noise, blur and noise and compressed, blur and 
compressed, and so forth. Basically ensuring that it gives a good output on images 
still that do not have less degradations occurring, until fully degraded.



Visual example of all variants of a specific train lr image



Created a mixed lr1 folder

Basically mixing together all the variants in the same folder, in 
a repetitive manner. 

With batch size 12 now, each variation will appear within each 
batch, so this mixed lr1 folder kinda recommends that batch, at 
least for early stages of training.

Better would be in a randomized order. Meaning if the training 
software itself, one could in the config give an array of lr 
folders, and for each image (like ‘0001.png’) it randomly gets it 
from one of the lr folders. So with longer training it would see 
more variance of degradation settings, also batch would matter 
less since randomized.



Mixed lr1 folder



Training

I trained a RealPLKSR model on this dataset (a modification by musl on PLKSR) 
with neosr since im testing out that arch currently.

I did not do any fancy method but pretty barebones, I set batch to 12 to match the 
variants in the mixed lr1 folder, left gt_size at 128, used a gan pretrain, and let it 
train for 270’000 iterations without changing the configuration during training.

I will show the configuration on the next slide, and then validation outputs. Some 
validation inputs are pretty strongly degraded, that is for me to more clearly see 
the denoising, decompression etc effects of the trained model and to draw 
conclusions from it.



The training config



Validation Image 1



Validation Image 2



Validation Image 3



Validation Image 4



Validation Image 5



Validation Image 6



Validation Image 7



Validation Image 8



Validation Image 9



Observations from model training outputs on dataset

- Lens blur radius 3 is too strong and needs to be reduced
- Noise degradation settings / strength is too strong and needs to be reduced
- Maybe adding down_up with multiple downsampling algos might help with 

some of these outputs



Rework 1 - Rebuilding Dataset



Using multiple downsampling algos and down_up now as 
base lr folder



Lens Blur strength reduced and distribution increased

Radius, components and gamma random for each image within certain range

Drastically reduced, min is now radius 1 components 2, max is radius 2 
components 4. I think blurs in general (lens, gaussian, …) need to be used very 
carefully, they get very strong very fast, even in their lowest settings.

Left img: difference original and new min. Right img: difference new and old max.



Noise reduction - new min (new, old) (noise1tmp0.04, noise1tmp0.06)



Noise reduction - new max (new, old) (noise5tmp0.08, noise5tmp0.14)



Max lens&noise degraded new, max lens&noise degraded old



Compression and recompression settings kept the same

The order is still important of course, first blur, then noise, then compression



Max degraded image in new dataset, original, then lens,noise,jpg,jpg



Max degraded image in old dataset, original, then lens,noise,jpg,jpg



Mixed lr1 folder



Training

I trained again a RealPLKSR model on this dataset with the same settings as 
previously.

This one is trained for less iterations, but it is enough to see the difference.

Though I got some conclusions from it again, looking at outputs (for example tree 
val - too many details get lost) and at the lr’s, the lens blur still seems too strong.

Ill show some outputs of the new model



Rework Val 1



Rework Val 2



Rework Val 3



Rework Val 4



Rework Val 5



Rework Val 6



Rework Val 7



Rework Val 8



Rework Val 9



Lens Float Rework



New lens blur

Float implementation by umzi

Way more fine grained control for me. 0.1 steps is barely visible to me. 0.01 steps 
are not visibly discernible to me, but with an image diff checker i can see that there 
are slight differences.

I redid the blur parts of the dataset, with 0.1 as min and 1.5 as max after 
inspecting the lr images.



New lens strengths



The lr’s with new lens strengths (meaning randomized manner)



LR’s from the fully degraded folders, first row previous, second row new



Mixed lr1 folder, lens float rework



Training

I then again trained a realplksr model.

The outputs looked better to the point that I was satisfied that this version would 
be release worthy.

So I upped gt size to 256, enabled additional losses like ldl, dists and ff, upped gt 
size to 512. After testing around I interpolated two of the checkpoints, and 
released the model as 4xNomosWebPhoto_RealPLKSR on my models github 
repo.

Following outputs I prepared for the release



Example 1



Example 2



Example 3



Example 4



Example 5



Example 6



Example 7



Example 8



Example 9



Example 10


