File size: 1,950 Bytes
ac01305
 
 
 
 
 
 
 
 
1f9088e
d7da771
ac01305
 
 
 
 
 
 
 
 
eee0d62
ac01305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee0d62
ac01305
 
 
 
 
eee0d62
 
 
 
 
 
 
 
 
 
ac01305
 
 
 
 
 
 
d7da771
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- facebook/voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_fr
  results: []
pipeline_tag: text-to-speech
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_voxpopuli_fr

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5054

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6907        | 2.01  | 50   | 0.6140          |
| 0.6341        | 4.02  | 100  | 0.5730          |
| 0.5993        | 6.04  | 150  | 0.5417          |
| 0.5707        | 9.0   | 200  | 0.5216          |
| 0.5551        | 11.02 | 250  | 0.5130          |
| 0.5589        | 13.03 | 300  | 0.5110          |
| 0.5447        | 15.04 | 350  | 0.5075          |
| 0.5463        | 18.01 | 400  | 0.5073          |
| 0.5381        | 20.02 | 450  | 0.5057          |
| 0.5409        | 22.03 | 500  | 0.5054          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3