--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 13E-affecthq-fer-balanced results: [] datasets: - Piro17/balancednumber-affecthqnet-fer2013 --- # 13E-affecthq-fer-balanced This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on Piro17/balancednumber-affecthqnet-fer2013 dataset. It achieves the following results on the evaluation set: - Loss: 1.0526 - Accuracy: 0.6225 - Precision: 0.6161 - Recall: 0.6225 - F1: 0.6167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 17 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.7863 | 1.0 | 133 | 1.7632 | 0.4005 | 0.3617 | 0.4005 | 0.3058 | | 1.3653 | 2.0 | 266 | 1.3630 | 0.5049 | 0.4838 | 0.5049 | 0.4445 | | 1.2468 | 3.0 | 399 | 1.2475 | 0.5466 | 0.5451 | 0.5466 | 0.5115 | | 1.1527 | 4.0 | 532 | 1.1865 | 0.5761 | 0.5612 | 0.5761 | 0.5580 | | 1.0862 | 5.0 | 665 | 1.1448 | 0.5785 | 0.5687 | 0.5785 | 0.5659 | | 1.064 | 6.0 | 798 | 1.1108 | 0.5972 | 0.5867 | 0.5972 | 0.5853 | | 1.0037 | 7.0 | 931 | 1.0969 | 0.6019 | 0.5968 | 0.6019 | 0.5946 | | 0.9533 | 8.0 | 1064 | 1.0764 | 0.6126 | 0.6034 | 0.6126 | 0.6046 | | 0.9063 | 9.0 | 1197 | 1.0711 | 0.6155 | 0.6035 | 0.6155 | 0.6047 | | 0.8666 | 10.0 | 1330 | 1.0589 | 0.6173 | 0.6107 | 0.6173 | 0.6108 | | 0.8364 | 11.0 | 1463 | 1.0556 | 0.6178 | 0.6110 | 0.6178 | 0.6108 | | 0.8659 | 12.0 | 1596 | 1.0521 | 0.6197 | 0.6141 | 0.6197 | 0.6151 | | 0.8383 | 13.0 | 1729 | 1.0526 | 0.6225 | 0.6161 | 0.6225 | 0.6167 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2