update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: 20E-affecthq
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.7178329571106095
|
28 |
+
- name: Precision
|
29 |
+
type: precision
|
30 |
+
value: 0.7187025517730355
|
31 |
+
- name: Recall
|
32 |
+
type: recall
|
33 |
+
value: 0.7178329571106095
|
34 |
+
- name: F1
|
35 |
+
type: f1
|
36 |
+
value: 0.717743945710896
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# 20E-affecthq
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.8245
|
47 |
+
- Accuracy: 0.7178
|
48 |
+
- Precision: 0.7187
|
49 |
+
- Recall: 0.7178
|
50 |
+
- F1: 0.7177
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 1e-05
|
70 |
+
- train_batch_size: 32
|
71 |
+
- eval_batch_size: 32
|
72 |
+
- seed: 17
|
73 |
+
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 128
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 20
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| 1.9149 | 1.0 | 194 | 1.8887 | 0.3750 | 0.3413 | 0.3750 | 0.3045 |
|
85 |
+
| 1.2903 | 2.0 | 388 | 1.2485 | 0.5792 | 0.5726 | 0.5792 | 0.5526 |
|
86 |
+
| 1.071 | 3.0 | 582 | 1.0587 | 0.6321 | 0.6258 | 0.6321 | 0.6228 |
|
87 |
+
| 1.0185 | 4.0 | 776 | 0.9817 | 0.6617 | 0.6584 | 0.6617 | 0.6553 |
|
88 |
+
| 0.894 | 5.0 | 970 | 0.9293 | 0.6869 | 0.6872 | 0.6869 | 0.6820 |
|
89 |
+
| 0.8283 | 6.0 | 1164 | 0.8881 | 0.6936 | 0.6929 | 0.6936 | 0.6905 |
|
90 |
+
| 0.8185 | 7.0 | 1358 | 0.8659 | 0.6982 | 0.7011 | 0.6982 | 0.6988 |
|
91 |
+
| 0.7499 | 8.0 | 1552 | 0.8558 | 0.7046 | 0.7050 | 0.7046 | 0.7021 |
|
92 |
+
| 0.7219 | 9.0 | 1746 | 0.8399 | 0.7124 | 0.7165 | 0.7124 | 0.7127 |
|
93 |
+
| 0.7382 | 10.0 | 1940 | 0.8300 | 0.7159 | 0.7184 | 0.7159 | 0.7145 |
|
94 |
+
| 0.6392 | 11.0 | 2134 | 0.8329 | 0.7088 | 0.7135 | 0.7088 | 0.7095 |
|
95 |
+
| 0.6549 | 12.0 | 2328 | 0.8297 | 0.7133 | 0.7135 | 0.7133 | 0.7120 |
|
96 |
+
| 0.6762 | 13.0 | 2522 | 0.8180 | 0.7156 | 0.7162 | 0.7156 | 0.7153 |
|
97 |
+
| 0.5937 | 14.0 | 2716 | 0.8271 | 0.7188 | 0.7220 | 0.7188 | 0.7190 |
|
98 |
+
| 0.569 | 15.0 | 2910 | 0.8245 | 0.7178 | 0.7175 | 0.7178 | 0.7165 |
|
99 |
+
| 0.5623 | 16.0 | 3104 | 0.8228 | 0.7165 | 0.7153 | 0.7165 | 0.7157 |
|
100 |
+
| 0.5291 | 17.0 | 3298 | 0.8238 | 0.7162 | 0.7165 | 0.7162 | 0.7156 |
|
101 |
+
| 0.5775 | 18.0 | 3492 | 0.8246 | 0.7153 | 0.7162 | 0.7153 | 0.7151 |
|
102 |
+
| 0.545 | 19.0 | 3686 | 0.8257 | 0.7178 | 0.7192 | 0.7178 | 0.7174 |
|
103 |
+
| 0.5409 | 20.0 | 3880 | 0.8245 | 0.7178 | 0.7187 | 0.7178 | 0.7177 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.27.0.dev0
|
109 |
+
- Pytorch 1.13.1+cu116
|
110 |
+
- Datasets 2.9.0
|
111 |
+
- Tokenizers 0.13.2
|