Piro17 commited on
Commit
865c7b6
1 Parent(s): 1044d5c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -0
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: 20E-affecthq
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.7178329571106095
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.7187025517730355
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.7178329571106095
34
+ - name: F1
35
+ type: f1
36
+ value: 0.717743945710896
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # 20E-affecthq
43
+
44
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.8245
47
+ - Accuracy: 0.7178
48
+ - Precision: 0.7187
49
+ - Recall: 0.7178
50
+ - F1: 0.7177
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 32
71
+ - eval_batch_size: 32
72
+ - seed: 17
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 128
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 20
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | 1.9149 | 1.0 | 194 | 1.8887 | 0.3750 | 0.3413 | 0.3750 | 0.3045 |
85
+ | 1.2903 | 2.0 | 388 | 1.2485 | 0.5792 | 0.5726 | 0.5792 | 0.5526 |
86
+ | 1.071 | 3.0 | 582 | 1.0587 | 0.6321 | 0.6258 | 0.6321 | 0.6228 |
87
+ | 1.0185 | 4.0 | 776 | 0.9817 | 0.6617 | 0.6584 | 0.6617 | 0.6553 |
88
+ | 0.894 | 5.0 | 970 | 0.9293 | 0.6869 | 0.6872 | 0.6869 | 0.6820 |
89
+ | 0.8283 | 6.0 | 1164 | 0.8881 | 0.6936 | 0.6929 | 0.6936 | 0.6905 |
90
+ | 0.8185 | 7.0 | 1358 | 0.8659 | 0.6982 | 0.7011 | 0.6982 | 0.6988 |
91
+ | 0.7499 | 8.0 | 1552 | 0.8558 | 0.7046 | 0.7050 | 0.7046 | 0.7021 |
92
+ | 0.7219 | 9.0 | 1746 | 0.8399 | 0.7124 | 0.7165 | 0.7124 | 0.7127 |
93
+ | 0.7382 | 10.0 | 1940 | 0.8300 | 0.7159 | 0.7184 | 0.7159 | 0.7145 |
94
+ | 0.6392 | 11.0 | 2134 | 0.8329 | 0.7088 | 0.7135 | 0.7088 | 0.7095 |
95
+ | 0.6549 | 12.0 | 2328 | 0.8297 | 0.7133 | 0.7135 | 0.7133 | 0.7120 |
96
+ | 0.6762 | 13.0 | 2522 | 0.8180 | 0.7156 | 0.7162 | 0.7156 | 0.7153 |
97
+ | 0.5937 | 14.0 | 2716 | 0.8271 | 0.7188 | 0.7220 | 0.7188 | 0.7190 |
98
+ | 0.569 | 15.0 | 2910 | 0.8245 | 0.7178 | 0.7175 | 0.7178 | 0.7165 |
99
+ | 0.5623 | 16.0 | 3104 | 0.8228 | 0.7165 | 0.7153 | 0.7165 | 0.7157 |
100
+ | 0.5291 | 17.0 | 3298 | 0.8238 | 0.7162 | 0.7165 | 0.7162 | 0.7156 |
101
+ | 0.5775 | 18.0 | 3492 | 0.8246 | 0.7153 | 0.7162 | 0.7153 | 0.7151 |
102
+ | 0.545 | 19.0 | 3686 | 0.8257 | 0.7178 | 0.7192 | 0.7178 | 0.7174 |
103
+ | 0.5409 | 20.0 | 3880 | 0.8245 | 0.7178 | 0.7187 | 0.7178 | 0.7177 |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.27.0.dev0
109
+ - Pytorch 1.13.1+cu116
110
+ - Datasets 2.9.0
111
+ - Tokenizers 0.13.2