update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: finetuned-fer2013-balanced
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# finetuned-fer2013-balanced
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.0183
|
23 |
+
- Accuracy: 0.6362
|
24 |
+
- Precision: 0.6312
|
25 |
+
- Recall: 0.6362
|
26 |
+
- F1: 0.6310
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 17
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
+
- total_train_batch_size: 64
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
59 |
+
| 1.3969 | 1.0 | 267 | 1.3735 | 0.4996 | 0.4776 | 0.4996 | 0.4436 |
|
60 |
+
| 1.2341 | 2.0 | 534 | 1.2239 | 0.5442 | 0.5430 | 0.5442 | 0.5108 |
|
61 |
+
| 1.1363 | 3.0 | 801 | 1.1585 | 0.5758 | 0.5715 | 0.5758 | 0.5638 |
|
62 |
+
| 1.0894 | 4.0 | 1068 | 1.1087 | 0.5912 | 0.5827 | 0.5912 | 0.5706 |
|
63 |
+
| 1.0666 | 5.0 | 1335 | 1.0655 | 0.6184 | 0.6111 | 0.6184 | 0.6082 |
|
64 |
+
| 0.9219 | 6.0 | 1602 | 1.0520 | 0.6233 | 0.6153 | 0.6233 | 0.6136 |
|
65 |
+
| 0.943 | 7.0 | 1869 | 1.0331 | 0.6299 | 0.6238 | 0.6299 | 0.6231 |
|
66 |
+
| 0.8906 | 8.0 | 2136 | 1.0238 | 0.6318 | 0.6252 | 0.6318 | 0.6239 |
|
67 |
+
| 0.8854 | 9.0 | 2403 | 1.0196 | 0.6341 | 0.6313 | 0.6341 | 0.6298 |
|
68 |
+
| 0.8991 | 10.0 | 2670 | 1.0183 | 0.6362 | 0.6312 | 0.6362 | 0.6310 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.27.0.dev0
|
74 |
+
- Pytorch 1.13.1+cu116
|
75 |
+
- Datasets 2.9.0
|
76 |
+
- Tokenizers 0.13.2
|