Piro17 commited on
Commit
693c161
1 Parent(s): 67208e8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: hq_fer2013notestaugM
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.6998319625011055
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.7002150749452164
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.6998319625011055
34
+ - name: F1
35
+ type: f1
36
+ value: 0.6991477606968214
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # hq_fer2013notestaugM
43
+
44
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.8287
47
+ - Accuracy: 0.6998
48
+ - Precision: 0.7002
49
+ - Recall: 0.6998
50
+ - F1: 0.6991
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 32
71
+ - eval_batch_size: 32
72
+ - seed: 17
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 128
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 10
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | 1.2858 | 1.0 | 353 | 1.2814 | 0.5545 | 0.5432 | 0.5545 | 0.5122 |
85
+ | 1.0247 | 2.0 | 706 | 1.0343 | 0.6288 | 0.6235 | 0.6288 | 0.6136 |
86
+ | 0.9403 | 3.0 | 1059 | 0.9500 | 0.6607 | 0.6592 | 0.6607 | 0.6522 |
87
+ | 0.8501 | 4.0 | 1412 | 0.8971 | 0.6803 | 0.6761 | 0.6803 | 0.6760 |
88
+ | 0.8148 | 5.0 | 1765 | 0.8733 | 0.6857 | 0.6881 | 0.6857 | 0.6854 |
89
+ | 0.7898 | 6.0 | 2118 | 0.8526 | 0.6913 | 0.6911 | 0.6913 | 0.6888 |
90
+ | 0.7074 | 7.0 | 2471 | 0.8408 | 0.6959 | 0.6971 | 0.6959 | 0.6953 |
91
+ | 0.7273 | 8.0 | 2824 | 0.8361 | 0.6980 | 0.6971 | 0.6980 | 0.6949 |
92
+ | 0.6982 | 9.0 | 3177 | 0.8297 | 0.6998 | 0.7022 | 0.6998 | 0.6999 |
93
+ | 0.6994 | 10.0 | 3530 | 0.8287 | 0.6998 | 0.7002 | 0.6998 | 0.6991 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - Transformers 4.27.0.dev0
99
+ - Pytorch 1.13.1+cu116
100
+ - Datasets 2.9.0
101
+ - Tokenizers 0.13.2