--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: hq_fer2013notestaugM results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6998319625011055 - name: Precision type: precision value: 0.7002150749452164 - name: Recall type: recall value: 0.6998319625011055 - name: F1 type: f1 value: 0.6991477606968214 --- # hq_fer2013notestaugM This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8287 - Accuracy: 0.6998 - Precision: 0.7002 - Recall: 0.6998 - F1: 0.6991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 17 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.2858 | 1.0 | 353 | 1.2814 | 0.5545 | 0.5432 | 0.5545 | 0.5122 | | 1.0247 | 2.0 | 706 | 1.0343 | 0.6288 | 0.6235 | 0.6288 | 0.6136 | | 0.9403 | 3.0 | 1059 | 0.9500 | 0.6607 | 0.6592 | 0.6607 | 0.6522 | | 0.8501 | 4.0 | 1412 | 0.8971 | 0.6803 | 0.6761 | 0.6803 | 0.6760 | | 0.8148 | 5.0 | 1765 | 0.8733 | 0.6857 | 0.6881 | 0.6857 | 0.6854 | | 0.7898 | 6.0 | 2118 | 0.8526 | 0.6913 | 0.6911 | 0.6913 | 0.6888 | | 0.7074 | 7.0 | 2471 | 0.8408 | 0.6959 | 0.6971 | 0.6959 | 0.6953 | | 0.7273 | 8.0 | 2824 | 0.8361 | 0.6980 | 0.6971 | 0.6980 | 0.6949 | | 0.6982 | 9.0 | 3177 | 0.8297 | 0.6998 | 0.7022 | 0.6998 | 0.6999 | | 0.6994 | 10.0 | 3530 | 0.8287 | 0.6998 | 0.7002 | 0.6998 | 0.6991 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2