--- license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoint-1000 results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: test args: ncbi_disease metrics: - name: Precision type: precision value: 0.8456973293768546 - name: Recall type: recall value: 0.890625 - name: F1 type: f1 value: 0.8675799086757991 - name: Accuracy type: accuracy value: 0.9850593950279626 --- # checkpoint-1000 This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0543 - Precision: 0.8457 - Recall: 0.8906 - F1: 0.8676 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.0596 | 0.7778 | 0.875 | 0.8235 | 0.9795 | | 0.0787 | 2.0 | 680 | 0.0416 | 0.8246 | 0.8865 | 0.8544 | 0.9851 | | 0.0202 | 3.0 | 1020 | 0.0494 | 0.8385 | 0.8812 | 0.8593 | 0.9846 | | 0.0202 | 4.0 | 1360 | 0.0543 | 0.8457 | 0.8906 | 0.8676 | 0.9851 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0