2023-01-08 08:23:21,495 ---------------------------------------------------------------------------------------------------- 2023-01-08 08:23:21,498 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(100000, 768, padding_idx=0) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) (word_dropout): WordDropout(p=0.05) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=18, bias=True) (beta): 1.0 (weights): None (weight_tensor) None )" 2023-01-08 08:23:21,500 ---------------------------------------------------------------------------------------------------- 2023-01-08 08:23:21,505 Corpus: "Corpus: 26116 train + 2902 dev + 1572 test sentences" 2023-01-08 08:23:21,506 ---------------------------------------------------------------------------------------------------- 2023-01-08 08:23:21,506 Parameters: 2023-01-08 08:23:21,507 - learning_rate: "5e-06" 2023-01-08 08:23:21,509 - mini_batch_size: "4" 2023-01-08 08:23:21,510 - patience: "3" 2023-01-08 08:23:21,512 - anneal_factor: "0.5" 2023-01-08 08:23:21,513 - max_epochs: "25" 2023-01-08 08:23:21,513 - shuffle: "False" 2023-01-08 08:23:21,514 - train_with_dev: "False" 2023-01-08 08:23:21,515 - batch_growth_annealing: "False" 2023-01-08 08:23:21,516 ---------------------------------------------------------------------------------------------------- 2023-01-08 08:23:21,517 Model training base path: "resources/taggers/NSURL-2019_25epochs" 2023-01-08 08:23:21,518 ---------------------------------------------------------------------------------------------------- 2023-01-08 08:23:21,519 Device: cuda:0 2023-01-08 08:23:21,519 ---------------------------------------------------------------------------------------------------- 2023-01-08 08:23:21,520 Embeddings storage mode: none 2023-01-08 18:00:13,690 ---------------------------------------------------------------------------------------------------- 2023-01-08 18:02:30,863 epoch 25 - iter 652/6529 - loss 0.12185023 - samples/sec: 19.02 - lr: 0.000000 2023-01-08 18:04:48,105 epoch 25 - iter 1304/6529 - loss 0.12151675 - samples/sec: 19.01 - lr: 0.000000 2023-01-08 18:07:03,845 epoch 25 - iter 1956/6529 - loss 0.12293666 - samples/sec: 19.22 - lr: 0.000000 2023-01-08 18:09:20,797 epoch 25 - iter 2608/6529 - loss 0.12248209 - samples/sec: 19.05 - lr: 0.000000 2023-01-08 18:11:38,782 epoch 25 - iter 3260/6529 - loss 0.12236612 - samples/sec: 18.91 - lr: 0.000000 2023-01-08 18:13:57,739 epoch 25 - iter 3912/6529 - loss 0.12284535 - samples/sec: 18.78 - lr: 0.000000 2023-01-08 18:16:19,460 epoch 25 - iter 4564/6529 - loss 0.12312537 - samples/sec: 18.41 - lr: 0.000000 2023-01-08 18:18:34,844 epoch 25 - iter 5216/6529 - loss 0.12315613 - samples/sec: 19.27 - lr: 0.000000 2023-01-08 18:20:52,724 epoch 25 - iter 5868/6529 - loss 0.12280164 - samples/sec: 18.92 - lr: 0.000000 2023-01-08 18:23:11,733 epoch 25 - iter 6520/6529 - loss 0.12286952 - samples/sec: 18.77 - lr: 0.000000 2023-01-08 18:23:13,587 ---------------------------------------------------------------------------------------------------- 2023-01-08 18:23:13,590 EPOCH 25 done: loss 0.1229 - lr 0.0000000 2023-01-08 18:24:28,587 DEV : loss 0.1607247292995453 - f1-score (micro avg) 0.9119 2023-01-08 18:24:28,641 BAD EPOCHS (no improvement): 4 2023-01-08 18:24:29,854 ---------------------------------------------------------------------------------------------------- 2023-01-08 18:24:29,857 Testing using last state of model ... 2023-01-08 18:25:11,654 0.9081 0.8984 0.9033 0.8277 2023-01-08 18:25:11,656 Results: - F-score (micro) 0.9033 - F-score (macro) 0.8976 - Accuracy 0.8277 By class: precision recall f1-score support ORG 0.9016 0.8667 0.8838 1523 LOC 0.9113 0.9305 0.9208 1425 PER 0.9216 0.9322 0.9269 1224 DAT 0.8623 0.7958 0.8277 480 MON 0.9665 0.9558 0.9611 181 PCT 0.9375 0.9740 0.9554 77 TIM 0.8235 0.7925 0.8077 53 micro avg 0.9081 0.8984 0.9033 4963 macro avg 0.9035 0.8925 0.8976 4963 weighted avg 0.9076 0.8984 0.9028 4963 samples avg 0.8277 0.8277 0.8277 4963 2023-01-08 18:25:11,656 ----------------------------------------------------------------------------------------------------