--- base_model: google-bert/bert-base-multilingual-cased library_name: transformers license: apache-2.0 metrics: - accuracy - f1 - precision - recall tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-intent-booking results: [] --- # bert-base-multilingual-cased-intent-booking This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3045 - Accuracy: 0.9189 - F1: 0.9155 - Precision: 0.9322 - Recall: 0.9189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 64 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 2.246 | 1.0 | 65 | 1.7430 | 0.4730 | 0.3680 | 0.3529 | 0.4730 | | 0.972 | 2.0 | 130 | 0.3620 | 0.9369 | 0.9371 | 0.9417 | 0.9369 | | 0.3069 | 3.0 | 195 | 0.2379 | 0.9414 | 0.9412 | 0.9490 | 0.9414 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1