File size: 6,530 Bytes
070883d
 
 
 
d34ea92
070883d
 
 
 
 
 
71bb303
070883d
e21981d
 
 
 
 
070883d
 
 
a3e3b05
070883d
71bb303
070883d
2c52f7f
a3e3b05
 
 
070883d
71bb303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
070883d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71bb303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
070883d
 
 
 
 
 
 
e21981d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: google-bert/bert-base-multilingual-cased
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: bert-base-intent-classification-cs-th
  results: []
datasets:
- Porameht/customer-support-th-26.9k
language:
- th
library_name: transformers
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.-->

# bert-base-intent-classification-cs-th

This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an [Porameht/customer-support-th-26.9k](https://huggingface.co/datasets/Porameht/customer-support-th-26.9k) dataset.

🧠 Can understand if any customer wants to cancel an order from a sentence. 

It achieves the following results on the evaluation set:
- Loss: 0.0408
- Accuracy: 0.9936
- F1: 0.9936
- Precision: 0.9937
- Recall: 0.9936

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 3.2835        | 0.0595 | 50   | 3.1041          | 0.1203   | 0.0504 | 0.0632    | 0.1210 |
| 2.6752        | 0.1190 | 100  | 1.9646          | 0.5387   | 0.4737 | 0.6298    | 0.5426 |
| 1.4751        | 0.1786 | 150  | 0.9447          | 0.8190   | 0.7929 | 0.8271    | 0.8188 |
| 0.7571        | 0.2381 | 200  | 0.5163          | 0.8952   | 0.8826 | 0.8812    | 0.8955 |
| 0.4849        | 0.2976 | 250  | 0.3539          | 0.9003   | 0.8905 | 0.8926    | 0.9021 |
| 0.3401        | 0.3571 | 300  | 0.2883          | 0.9160   | 0.9037 | 0.9012    | 0.9165 |
| 0.2533        | 0.4167 | 350  | 0.1735          | 0.9431   | 0.9322 | 0.9266    | 0.9443 |
| 0.177         | 0.4762 | 400  | 0.1326          | 0.9665   | 0.9670 | 0.9676    | 0.9671 |
| 0.119         | 0.5357 | 450  | 0.1527          | 0.9592   | 0.9582 | 0.9699    | 0.9600 |
| 0.1183        | 0.5952 | 500  | 0.0886          | 0.9839   | 0.9841 | 0.9841    | 0.9842 |
| 0.1065        | 0.6548 | 550  | 0.0829          | 0.9844   | 0.9844 | 0.9847    | 0.9844 |
| 0.1006        | 0.7143 | 600  | 0.0686          | 0.9869   | 0.9869 | 0.9872    | 0.9869 |
| 0.1096        | 0.7738 | 650  | 0.1071          | 0.9789   | 0.9791 | 0.9800    | 0.9788 |
| 0.1392        | 0.8333 | 700  | 0.0939          | 0.9804   | 0.9804 | 0.9808    | 0.9803 |
| 0.1067        | 0.8929 | 750  | 0.1077          | 0.9786   | 0.9790 | 0.9802    | 0.9786 |
| 0.0779        | 0.9524 | 800  | 0.0657          | 0.9878   | 0.9878 | 0.9879    | 0.9879 |
| 0.0626        | 1.0119 | 850  | 0.0750          | 0.9851   | 0.9853 | 0.9856    | 0.9852 |
| 0.0419        | 1.0714 | 900  | 0.0641          | 0.9893   | 0.9893 | 0.9895    | 0.9893 |
| 0.0373        | 1.1310 | 950  | 0.0664          | 0.9891   | 0.9891 | 0.9893    | 0.9890 |
| 0.035         | 1.1905 | 1000 | 0.0575          | 0.9906   | 0.9906 | 0.9907    | 0.9906 |
| 0.036         | 1.25   | 1050 | 0.0601          | 0.9891   | 0.9893 | 0.9895    | 0.9892 |
| 0.0765        | 1.3095 | 1100 | 0.0682          | 0.9875   | 0.9875 | 0.9877    | 0.9874 |
| 0.0637        | 1.3690 | 1150 | 0.0587          | 0.9906   | 0.9906 | 0.9908    | 0.9906 |
| 0.0241        | 1.4286 | 1200 | 0.0528          | 0.9906   | 0.9907 | 0.9909    | 0.9905 |
| 0.0608        | 1.4881 | 1250 | 0.0458          | 0.9920   | 0.9920 | 0.9922    | 0.9919 |
| 0.0199        | 1.5476 | 1300 | 0.0508          | 0.9914   | 0.9914 | 0.9915    | 0.9914 |
| 0.0663        | 1.6071 | 1350 | 0.0461          | 0.9911   | 0.9910 | 0.9911    | 0.9910 |
| 0.0495        | 1.6667 | 1400 | 0.0525          | 0.9906   | 0.9907 | 0.9908    | 0.9906 |
| 0.0336        | 1.7262 | 1450 | 0.0478          | 0.9915   | 0.9916 | 0.9917    | 0.9915 |
| 0.0249        | 1.7857 | 1500 | 0.0578          | 0.9891   | 0.9891 | 0.9892    | 0.9891 |
| 0.0287        | 1.8452 | 1550 | 0.0547          | 0.9908   | 0.9908 | 0.9909    | 0.9908 |
| 0.0607        | 1.9048 | 1600 | 0.0395          | 0.9929   | 0.9929 | 0.9930    | 0.9928 |
| 0.0268        | 1.9643 | 1650 | 0.0529          | 0.9897   | 0.9898 | 0.9902    | 0.9897 |
| 0.013         | 2.0238 | 1700 | 0.0455          | 0.9924   | 0.9925 | 0.9926    | 0.9925 |
| 0.0106        | 2.0833 | 1750 | 0.0419          | 0.9927   | 0.9928 | 0.9928    | 0.9927 |
| 0.007         | 2.1429 | 1800 | 0.0461          | 0.9920   | 0.9920 | 0.9921    | 0.9919 |
| 0.0502        | 2.2024 | 1850 | 0.0433          | 0.9929   | 0.9929 | 0.9930    | 0.9929 |
| 0.017         | 2.2619 | 1900 | 0.0440          | 0.9926   | 0.9926 | 0.9927    | 0.9926 |
| 0.0119        | 2.3214 | 1950 | 0.0403          | 0.9927   | 0.9928 | 0.9928    | 0.9927 |
| 0.0063        | 2.3810 | 2000 | 0.0391          | 0.9930   | 0.9930 | 0.9931    | 0.9930 |
| 0.0103        | 2.4405 | 2050 | 0.0412          | 0.9929   | 0.9929 | 0.9930    | 0.9929 |
| 0.012         | 2.5    | 2100 | 0.0420          | 0.9929   | 0.9929 | 0.9930    | 0.9929 |
| 0.0233        | 2.5595 | 2150 | 0.0407          | 0.9927   | 0.9928 | 0.9928    | 0.9928 |
| 0.0169        | 2.6190 | 2200 | 0.0397          | 0.9930   | 0.9930 | 0.9931    | 0.9930 |
| 0.0281        | 2.6786 | 2250 | 0.0367          | 0.9933   | 0.9933 | 0.9934    | 0.9933 |
| 0.0117        | 2.7381 | 2300 | 0.0360          | 0.9933   | 0.9933 | 0.9934    | 0.9933 |
| 0.0225        | 2.7976 | 2350 | 0.0354          | 0.9936   | 0.9936 | 0.9937    | 0.9936 |
| 0.0078        | 2.8571 | 2400 | 0.0357          | 0.9936   | 0.9936 | 0.9937    | 0.9936 |
| 0.0164        | 2.9167 | 2450 | 0.0346          | 0.9939   | 0.9939 | 0.9940    | 0.9939 |
| 0.0016        | 2.9762 | 2500 | 0.0345          | 0.9939   | 0.9939 | 0.9940    | 0.9939 |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1