add config
Browse files- config.json +29 -0
- configuration_bamboo.py +144 -0
- generation_config.json +6 -0
- modeling_attn_mask_utils.py +500 -0
- modeling_bamboo.py +1388 -0
- special_tokens_map.json +30 -0
- tokenizer.model +3 -0
- tokenizer_config.json +45 -0
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BambooForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_bamboo.BambooConfig",
|
7 |
+
"AutoModel": "modeling_bamboo.BambooForCausalLM",
|
8 |
+
"AutoModelForCausalLM": "modeling_bamboo.BambooForCausalLM"
|
9 |
+
},
|
10 |
+
"bos_token_id": 1,
|
11 |
+
"eos_token_id": 2,
|
12 |
+
"hidden_act": "relu",
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 14336,
|
16 |
+
"max_position_embeddings": 32768,
|
17 |
+
"model_type": "bamboo",
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_hidden_layers": 32,
|
20 |
+
"num_key_value_heads": 8,
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_theta": 10000.0,
|
23 |
+
"sliding_window": 4096,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.34.0.dev0",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
configuration_bamboo.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" This model config is from Mistral config """
|
16 |
+
""" Viola model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
class BambooConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
36 |
+
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
|
37 |
+
`inputs_ids` passed when calling [`MistralModel`]
|
38 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
39 |
+
Dimension of the hidden representations.
|
40 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
41 |
+
Dimension of the MLP representations.
|
42 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
43 |
+
Number of hidden layers in the Transformer encoder.
|
44 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
45 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
46 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
47 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
48 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
49 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
50 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
51 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
52 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
53 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
54 |
+
The non-linear activation function (function or string) in the decoder.
|
55 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
56 |
+
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
|
57 |
+
allows sequence of up to 4096*32 tokens.
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
61 |
+
The epsilon used by the rms normalization layers.
|
62 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
64 |
+
relevant if `config.is_decoder=True`.
|
65 |
+
pad_token_id (`int`, *optional*):
|
66 |
+
The id of the padding token.
|
67 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
68 |
+
The id of the "beginning-of-sequence" token.
|
69 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
70 |
+
The id of the "end-of-sequence" token.
|
71 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
72 |
+
Whether the model's input and output word embeddings should be tied.
|
73 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
74 |
+
The base period of the RoPE embeddings.
|
75 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
76 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
77 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
78 |
+
The dropout ratio for the attention probabilities.
|
79 |
+
|
80 |
+
```python
|
81 |
+
>>> from transformers import MistralModel, MistralConfig
|
82 |
+
|
83 |
+
>>> # Initializing a Mistral 7B style configuration
|
84 |
+
>>> configuration = MistralConfig()
|
85 |
+
|
86 |
+
>>> # Initializing a model from the Mistral 7B style configuration
|
87 |
+
>>> model = MistralModel(configuration)
|
88 |
+
|
89 |
+
>>> # Accessing the model configuration
|
90 |
+
>>> configuration = model.config
|
91 |
+
```"""
|
92 |
+
|
93 |
+
model_type = "bamboo"
|
94 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
vocab_size=32000,
|
99 |
+
hidden_size=4096,
|
100 |
+
intermediate_size=14336,
|
101 |
+
num_hidden_layers=32,
|
102 |
+
num_attention_heads=32,
|
103 |
+
num_key_value_heads=8,
|
104 |
+
hidden_act="silu",
|
105 |
+
max_position_embeddings=4096 * 32,
|
106 |
+
initializer_range=0.02,
|
107 |
+
rms_norm_eps=1e-6,
|
108 |
+
use_cache=True,
|
109 |
+
pad_token_id=None,
|
110 |
+
bos_token_id=1,
|
111 |
+
eos_token_id=2,
|
112 |
+
tie_word_embeddings=False,
|
113 |
+
rope_theta=10000.0,
|
114 |
+
sliding_window=4096,
|
115 |
+
attention_dropout=0.0,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
self.vocab_size = vocab_size
|
119 |
+
self.max_position_embeddings = max_position_embeddings
|
120 |
+
self.hidden_size = hidden_size
|
121 |
+
self.intermediate_size = intermediate_size
|
122 |
+
self.num_hidden_layers = num_hidden_layers
|
123 |
+
self.num_attention_heads = num_attention_heads
|
124 |
+
self.sliding_window = sliding_window
|
125 |
+
|
126 |
+
# for backward compatibility
|
127 |
+
if num_key_value_heads is None:
|
128 |
+
num_key_value_heads = num_attention_heads
|
129 |
+
|
130 |
+
self.num_key_value_heads = num_key_value_heads
|
131 |
+
self.hidden_act = hidden_act
|
132 |
+
self.initializer_range = initializer_range
|
133 |
+
self.rms_norm_eps = rms_norm_eps
|
134 |
+
self.use_cache = use_cache
|
135 |
+
self.rope_theta = rope_theta
|
136 |
+
self.attention_dropout = attention_dropout
|
137 |
+
|
138 |
+
super().__init__(
|
139 |
+
pad_token_id=pad_token_id,
|
140 |
+
bos_token_id=bos_token_id,
|
141 |
+
eos_token_id=eos_token_id,
|
142 |
+
tie_word_embeddings=tie_word_embeddings,
|
143 |
+
**kwargs,
|
144 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_sample": true,
|
3 |
+
"max_new_tokens": 4096,
|
4 |
+
"temperature": 0.0,
|
5 |
+
"transformers_version": "4.38.2"
|
6 |
+
}
|
modeling_attn_mask_utils.py
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class AttentionMaskConverter:
|
22 |
+
"""
|
23 |
+
A utility attention mask class that allows one to:
|
24 |
+
- Create a causal 4d mask
|
25 |
+
- Create a causal 4d mask with slided window
|
26 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
27 |
+
key_value_length) that can be multiplied with attention scores
|
28 |
+
|
29 |
+
Examples:
|
30 |
+
|
31 |
+
```python
|
32 |
+
>>> import torch
|
33 |
+
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
34 |
+
|
35 |
+
>>> converter = AttentionMaskConverter(True)
|
36 |
+
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32)
|
37 |
+
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
38 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
39 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
40 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38],
|
41 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]])
|
42 |
+
```
|
43 |
+
|
44 |
+
Parameters:
|
45 |
+
is_causal (`bool`):
|
46 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
47 |
+
|
48 |
+
sliding_window (`int`, *optional*):
|
49 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
50 |
+
"""
|
51 |
+
|
52 |
+
is_causal: bool
|
53 |
+
sliding_window: int
|
54 |
+
|
55 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
56 |
+
self.is_causal = is_causal
|
57 |
+
self.sliding_window = sliding_window
|
58 |
+
|
59 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
60 |
+
raise ValueError(
|
61 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
62 |
+
)
|
63 |
+
|
64 |
+
def to_causal_4d(
|
65 |
+
self,
|
66 |
+
batch_size: int,
|
67 |
+
query_length: int,
|
68 |
+
key_value_length: int,
|
69 |
+
dtype: torch.dtype,
|
70 |
+
device: Union[torch.device, "str"] = "cpu",
|
71 |
+
) -> Optional[torch.Tensor]:
|
72 |
+
"""
|
73 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
74 |
+
bias to upper right hand triangular matrix (causal mask).
|
75 |
+
"""
|
76 |
+
if not self.is_causal:
|
77 |
+
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
|
78 |
+
|
79 |
+
# If shape is not cached, create a new causal mask and cache it
|
80 |
+
input_shape = (batch_size, query_length)
|
81 |
+
past_key_values_length = key_value_length - query_length
|
82 |
+
|
83 |
+
# create causal mask
|
84 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
85 |
+
causal_4d_mask = None
|
86 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
87 |
+
causal_4d_mask = self._make_causal_mask(
|
88 |
+
input_shape,
|
89 |
+
dtype,
|
90 |
+
device=device,
|
91 |
+
past_key_values_length=past_key_values_length,
|
92 |
+
sliding_window=self.sliding_window,
|
93 |
+
)
|
94 |
+
|
95 |
+
return causal_4d_mask
|
96 |
+
|
97 |
+
def to_4d(
|
98 |
+
self,
|
99 |
+
attention_mask_2d: torch.Tensor,
|
100 |
+
query_length: int,
|
101 |
+
dtype: torch.dtype,
|
102 |
+
key_value_length: Optional[int] = None,
|
103 |
+
) -> torch.Tensor:
|
104 |
+
"""
|
105 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
106 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
107 |
+
causal, a causal mask will be added.
|
108 |
+
"""
|
109 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
110 |
+
|
111 |
+
# create causal mask
|
112 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
113 |
+
causal_4d_mask = None
|
114 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
115 |
+
if key_value_length is None:
|
116 |
+
raise ValueError(
|
117 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
118 |
+
)
|
119 |
+
|
120 |
+
past_key_values_length = key_value_length - query_length
|
121 |
+
causal_4d_mask = self._make_causal_mask(
|
122 |
+
input_shape,
|
123 |
+
dtype,
|
124 |
+
device=attention_mask_2d.device,
|
125 |
+
past_key_values_length=past_key_values_length,
|
126 |
+
sliding_window=self.sliding_window,
|
127 |
+
)
|
128 |
+
elif self.sliding_window is not None:
|
129 |
+
raise NotImplementedError("Sliding window is currently only implemented for causal masking")
|
130 |
+
|
131 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
132 |
+
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
|
133 |
+
attention_mask_2d.device
|
134 |
+
)
|
135 |
+
|
136 |
+
if causal_4d_mask is not None:
|
137 |
+
expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min)
|
138 |
+
|
139 |
+
# expanded_attn_mask + causal_4d_mask can cause some overflow
|
140 |
+
expanded_4d_mask = expanded_attn_mask
|
141 |
+
|
142 |
+
return expanded_4d_mask
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
def _make_causal_mask(
|
146 |
+
input_ids_shape: torch.Size,
|
147 |
+
dtype: torch.dtype,
|
148 |
+
device: torch.device,
|
149 |
+
past_key_values_length: int = 0,
|
150 |
+
sliding_window: Optional[int] = None,
|
151 |
+
):
|
152 |
+
"""
|
153 |
+
Make causal mask used for bi-directional self-attention.
|
154 |
+
"""
|
155 |
+
bsz, tgt_len = input_ids_shape
|
156 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
157 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
158 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
159 |
+
|
160 |
+
mask = mask.to(dtype)
|
161 |
+
|
162 |
+
if past_key_values_length > 0:
|
163 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
164 |
+
|
165 |
+
# add lower triangular sliding window mask if necessary
|
166 |
+
if sliding_window is not None:
|
167 |
+
diagonal = past_key_values_length - sliding_window + 1
|
168 |
+
|
169 |
+
context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal)
|
170 |
+
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
|
171 |
+
|
172 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
176 |
+
"""
|
177 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
178 |
+
"""
|
179 |
+
bsz, src_len = mask.size()
|
180 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
181 |
+
|
182 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
183 |
+
|
184 |
+
inverted_mask = 1.0 - expanded_mask
|
185 |
+
|
186 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def _unmask_unattended(
|
190 |
+
expanded_mask: torch.Tensor, attention_mask: torch.Tensor, unmasked_value: Union[bool, float]
|
191 |
+
):
|
192 |
+
# fmt: off
|
193 |
+
"""
|
194 |
+
Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when
|
195 |
+
using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
196 |
+
Details: https://github.com/pytorch/pytorch/issues/110213
|
197 |
+
|
198 |
+
`expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len].
|
199 |
+
`attention_mask` is [bsz, src_seq_len].
|
200 |
+
|
201 |
+
The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias.
|
202 |
+
|
203 |
+
For example, if `attention_mask` is
|
204 |
+
```
|
205 |
+
[[0, 0, 1],
|
206 |
+
[1, 1, 1],
|
207 |
+
[0, 1, 1]]
|
208 |
+
```
|
209 |
+
and `expanded_mask` is (e.g. here left-padding case)
|
210 |
+
```
|
211 |
+
[[[[0, 0, 0],
|
212 |
+
[0, 0, 0],
|
213 |
+
[0, 0, 1]]],
|
214 |
+
[[[1, 0, 0],
|
215 |
+
[1, 1, 0],
|
216 |
+
[1, 1, 1]]],
|
217 |
+
[[[0, 0, 0],
|
218 |
+
[0, 1, 0],
|
219 |
+
[0, 1, 1]]]]
|
220 |
+
```
|
221 |
+
then the modified `expanded_mask` will be
|
222 |
+
```
|
223 |
+
[[[[1, 1, 1], <-- modified
|
224 |
+
[1, 1, 1], <-- modified
|
225 |
+
[0, 0, 1]]],
|
226 |
+
[[[1, 0, 0],
|
227 |
+
[1, 1, 0],
|
228 |
+
[1, 1, 1]]],
|
229 |
+
[[[1, 1, 1], <-- modified
|
230 |
+
[0, 1, 0],
|
231 |
+
[0, 1, 1]]]]
|
232 |
+
```
|
233 |
+
"""
|
234 |
+
# fmt: on
|
235 |
+
|
236 |
+
# Get the index of the first non-zero value for every sample in the batch.
|
237 |
+
# In the above example, indices = [[2], [0], [1]]]
|
238 |
+
tmp = torch.arange(attention_mask.shape[1], 0, -1)
|
239 |
+
indices = torch.argmax(attention_mask.cpu() * tmp, 1, keepdim=True)
|
240 |
+
|
241 |
+
# Find the batch indexes that have unattended tokens on the leftmost side (e.g. [0, 0, 1, 1, 1]), for which the first rows of the
|
242 |
+
# expanded mask will be completely unattended.
|
243 |
+
left_masked_rows = torch.where(indices > 0)[0]
|
244 |
+
|
245 |
+
if left_masked_rows.shape[0] == 0:
|
246 |
+
return expanded_mask
|
247 |
+
indices = indices[left_masked_rows]
|
248 |
+
|
249 |
+
max_len = torch.max(indices)
|
250 |
+
range_tensor = torch.arange(max_len).unsqueeze(0)
|
251 |
+
range_tensor = range_tensor.repeat(indices.size(0), 1)
|
252 |
+
|
253 |
+
# Avoid unmasking tokens at relevant target positions (on the row axis), by rather unmasking possibly several times the first row that should always be unmasked as we filtered out the batch above.
|
254 |
+
range_tensor[range_tensor >= indices] = 0
|
255 |
+
|
256 |
+
# TODO: we may drop support for 3D attention mask as the refactor from Patrick maybe dropped this case
|
257 |
+
if expanded_mask.dim() == 4:
|
258 |
+
num_masks = expanded_mask.shape[1]
|
259 |
+
if num_masks == 1:
|
260 |
+
# Broadcast [left_masked_rows, 1], [left_masked_rows, max_len]
|
261 |
+
mask_slice = (left_masked_rows[:, None], 0, range_tensor)
|
262 |
+
else:
|
263 |
+
# Broadcast [left_masked_rows, 1, 1], [1, num_masks, 1], [left_masked_rows, 1, max_len]
|
264 |
+
mask_slice = (
|
265 |
+
left_masked_rows[:, None, None],
|
266 |
+
torch.arange(num_masks)[None, :, None],
|
267 |
+
range_tensor[:, None, :],
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
# Broadcast [left_masked_rows, 1], [left_masked_rows, max_len]
|
271 |
+
mask_slice = (left_masked_rows[:, None], range_tensor)
|
272 |
+
|
273 |
+
expanded_mask[mask_slice] = unmasked_value
|
274 |
+
|
275 |
+
return expanded_mask
|
276 |
+
|
277 |
+
|
278 |
+
def _prepare_4d_causal_attention_mask(
|
279 |
+
attention_mask: Optional[torch.Tensor],
|
280 |
+
input_shape: Union[torch.Size, Tuple, List],
|
281 |
+
inputs_embeds: torch.Tensor,
|
282 |
+
past_key_values_length: int,
|
283 |
+
sliding_window: Optional[int] = None,
|
284 |
+
):
|
285 |
+
"""
|
286 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
287 |
+
`(batch_size, key_value_length)`
|
288 |
+
|
289 |
+
Args:
|
290 |
+
attention_mask (`torch.Tensor` or `None`):
|
291 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
292 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
293 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
294 |
+
inputs_embeds (`torch.Tensor`):
|
295 |
+
The embedded inputs as a torch Tensor.
|
296 |
+
past_key_values_length (`int`):
|
297 |
+
The length of the key value cache.
|
298 |
+
sliding_window (`int`, *optional*):
|
299 |
+
If the model uses windowed attention, a sliding window should be passed.
|
300 |
+
"""
|
301 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
302 |
+
|
303 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
304 |
+
|
305 |
+
# 4d mask is passed through the layers
|
306 |
+
if attention_mask is not None and len(attention_mask.shape) == 2:
|
307 |
+
attention_mask = attn_mask_converter.to_4d(
|
308 |
+
attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
|
309 |
+
)
|
310 |
+
elif attention_mask is not None and len(attention_mask.shape) == 4:
|
311 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
312 |
+
if tuple(attention_mask.shape) != expected_shape:
|
313 |
+
raise ValueError(
|
314 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
315 |
+
)
|
316 |
+
else:
|
317 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
318 |
+
inverted_mask = 1.0 - attention_mask
|
319 |
+
attention_mask = inverted_mask.masked_fill(
|
320 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
324 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
325 |
+
)
|
326 |
+
|
327 |
+
return attention_mask
|
328 |
+
|
329 |
+
|
330 |
+
# Adapted from _prepare_4d_causal_attention_mask
|
331 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(
|
332 |
+
attention_mask: Optional[torch.Tensor],
|
333 |
+
input_shape: Union[torch.Size, Tuple, List],
|
334 |
+
inputs_embeds: torch.Tensor,
|
335 |
+
past_key_values_length: int,
|
336 |
+
sliding_window: Optional[int] = None,
|
337 |
+
):
|
338 |
+
"""
|
339 |
+
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
|
340 |
+
|
341 |
+
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
|
342 |
+
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
|
343 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
344 |
+
"""
|
345 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
346 |
+
|
347 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
348 |
+
batch_size, query_length = input_shape
|
349 |
+
|
350 |
+
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
351 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
352 |
+
# TODO: Fix this as well when using torchdynamo with fullgraph=True.
|
353 |
+
is_tracing = torch.jit.is_tracing() or isinstance(inputs_embeds, torch.fx.Proxy)
|
354 |
+
|
355 |
+
if attention_mask is not None:
|
356 |
+
# 4d mask is passed through
|
357 |
+
if len(attention_mask.shape) == 4:
|
358 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
359 |
+
if tuple(attention_mask.shape) != expected_shape:
|
360 |
+
raise ValueError(
|
361 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
365 |
+
inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype)
|
366 |
+
attention_mask = inverted_mask.masked_fill(
|
367 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
368 |
+
)
|
369 |
+
return attention_mask
|
370 |
+
|
371 |
+
elif not is_tracing and torch.all(attention_mask == 1):
|
372 |
+
if query_length == 1:
|
373 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
374 |
+
attention_mask = None
|
375 |
+
elif key_value_length == query_length:
|
376 |
+
attention_mask = None
|
377 |
+
else:
|
378 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
|
379 |
+
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
380 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
381 |
+
pass
|
382 |
+
elif query_length > 1 and key_value_length != query_length:
|
383 |
+
# See the comment above (https://github.com/pytorch/pytorch/issues/108108).
|
384 |
+
# Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`.
|
385 |
+
attention_mask = True
|
386 |
+
elif is_tracing:
|
387 |
+
raise ValueError(
|
388 |
+
'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.'
|
389 |
+
)
|
390 |
+
|
391 |
+
if attention_mask is None:
|
392 |
+
expanded_4d_mask = None
|
393 |
+
elif attention_mask is True:
|
394 |
+
expanded_4d_mask = attn_mask_converter.to_causal_4d(
|
395 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
396 |
+
)
|
397 |
+
else:
|
398 |
+
expanded_4d_mask = attn_mask_converter.to_4d(
|
399 |
+
attention_mask,
|
400 |
+
input_shape[-1],
|
401 |
+
dtype=inputs_embeds.dtype,
|
402 |
+
key_value_length=key_value_length,
|
403 |
+
)
|
404 |
+
|
405 |
+
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
|
406 |
+
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
|
407 |
+
#
|
408 |
+
# This fix is not applied in case we are tracing with torch.jit.trace or symbolic_trace, as _unmask_unattended has a data-dependent
|
409 |
+
# controlflow that can not be captured properly.
|
410 |
+
# TODO: _unmask_unattended does not work either with torch.compile when using fullgraph=True. We should find a way to detect this case.
|
411 |
+
if query_length > 1 and not is_tracing:
|
412 |
+
expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
|
413 |
+
expanded_4d_mask, attention_mask, unmasked_value=0.0
|
414 |
+
)
|
415 |
+
|
416 |
+
return expanded_4d_mask
|
417 |
+
|
418 |
+
|
419 |
+
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
420 |
+
"""
|
421 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
422 |
+
`(batch_size, key_value_length)`
|
423 |
+
|
424 |
+
Args:
|
425 |
+
mask (`torch.Tensor` or `None`):
|
426 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
427 |
+
dtype (`torch.dtype`):
|
428 |
+
The torch dtype the created mask shall have.
|
429 |
+
tgt_len (`int`):
|
430 |
+
The target length or query length the created mask shall have.
|
431 |
+
"""
|
432 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
433 |
+
|
434 |
+
|
435 |
+
def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
436 |
+
"""
|
437 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
438 |
+
`(batch_size, key_value_length)`
|
439 |
+
|
440 |
+
Args:
|
441 |
+
mask (`torch.Tensor` or `None`):
|
442 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
443 |
+
dtype (`torch.dtype`):
|
444 |
+
The torch dtype the created mask shall have.
|
445 |
+
tgt_len (`int`):
|
446 |
+
The target length or query length the created mask shall have.
|
447 |
+
"""
|
448 |
+
batch_size, key_value_length = mask.shape
|
449 |
+
tgt_len = tgt_len if tgt_len is not None else key_value_length
|
450 |
+
|
451 |
+
# torch.jit.trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
452 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
453 |
+
# TODO: Fix this as well when using torchdynamo with fullgraph=True.
|
454 |
+
is_tracing = torch.jit.is_tracing()
|
455 |
+
|
456 |
+
if torch.all(mask == 1):
|
457 |
+
if is_tracing:
|
458 |
+
pass
|
459 |
+
elif tgt_len == 1:
|
460 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
461 |
+
return None
|
462 |
+
elif key_value_length == tgt_len:
|
463 |
+
return None
|
464 |
+
else:
|
465 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we can not generally ignore the attention mask, as SDPA causal mask generation
|
466 |
+
# may be wrong. We will set is_causal=False in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
467 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
468 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
469 |
+
else:
|
470 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
471 |
+
|
472 |
+
|
473 |
+
def _create_4d_causal_attention_mask(
|
474 |
+
input_shape: Union[torch.Size, Tuple, List],
|
475 |
+
dtype: torch.dtype,
|
476 |
+
device: torch.device,
|
477 |
+
past_key_values_length: int = 0,
|
478 |
+
sliding_window: Optional[int] = None,
|
479 |
+
) -> Optional[torch.Tensor]:
|
480 |
+
"""
|
481 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
482 |
+
|
483 |
+
Args:
|
484 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
485 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
486 |
+
dtype (`torch.dtype`):
|
487 |
+
The torch dtype the created mask shall have.
|
488 |
+
device (`int`):
|
489 |
+
The torch device the created mask shall have.
|
490 |
+
sliding_window (`int`, *optional*):
|
491 |
+
If the model uses windowed attention, a sliding window should be passed.
|
492 |
+
"""
|
493 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
494 |
+
|
495 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
496 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
497 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
498 |
+
)
|
499 |
+
|
500 |
+
return attention_mask
|
modeling_bamboo.py
ADDED
@@ -0,0 +1,1388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Bamboo model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
|
34 |
+
from transformers.cache_utils import Cache, DynamicCache
|
35 |
+
from transformers.activations import ACT2FN
|
36 |
+
from .modeling_attn_mask_utils import AttentionMaskConverter, _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
37 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.utils import (
|
40 |
+
add_start_docstrings,
|
41 |
+
add_start_docstrings_to_model_forward,
|
42 |
+
is_flash_attn_2_available,
|
43 |
+
is_flash_attn_greater_or_equal_2_10,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
from .configuration_bamboo import BambooConfig
|
48 |
+
|
49 |
+
|
50 |
+
if is_flash_attn_2_available():
|
51 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
52 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
53 |
+
|
54 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__)
|
58 |
+
|
59 |
+
_CONFIG_FOR_DOC = "BambooConfig"
|
60 |
+
|
61 |
+
|
62 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
63 |
+
def _get_unpad_data(attention_mask):
|
64 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
65 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
66 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
67 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
68 |
+
return (
|
69 |
+
indices,
|
70 |
+
cu_seqlens,
|
71 |
+
max_seqlen_in_batch,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
|
76 |
+
class MistralRMSNorm(nn.Module):
|
77 |
+
def __init__(self, hidden_size, eps=1e-6):
|
78 |
+
"""
|
79 |
+
MistralRMSNorm is equivalent to T5LayerNorm
|
80 |
+
"""
|
81 |
+
super().__init__()
|
82 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
83 |
+
self.variance_epsilon = eps
|
84 |
+
|
85 |
+
def forward(self, hidden_states):
|
86 |
+
input_dtype = hidden_states.dtype
|
87 |
+
hidden_states = hidden_states.to(torch.float32)
|
88 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
89 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
90 |
+
return self.weight * hidden_states.to(input_dtype)
|
91 |
+
|
92 |
+
|
93 |
+
# copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
|
94 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
95 |
+
class MistralRotaryEmbedding(nn.Module):
|
96 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
self.dim = dim
|
100 |
+
self.max_position_embeddings = max_position_embeddings
|
101 |
+
self.base = base
|
102 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
103 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
104 |
+
|
105 |
+
# Build here to make `torch.jit.trace` work.
|
106 |
+
self._set_cos_sin_cache(
|
107 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
108 |
+
)
|
109 |
+
|
110 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
111 |
+
self.max_seq_len_cached = seq_len
|
112 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
113 |
+
|
114 |
+
freqs = torch.outer(t, self.inv_freq)
|
115 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
116 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
117 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
118 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
119 |
+
|
120 |
+
def forward(self, x, seq_len=None):
|
121 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
122 |
+
if seq_len > self.max_seq_len_cached:
|
123 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
124 |
+
|
125 |
+
return (
|
126 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
127 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
132 |
+
def rotate_half(x):
|
133 |
+
"""Rotates half the hidden dims of the input."""
|
134 |
+
x1 = x[..., : x.shape[-1] // 2]
|
135 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
136 |
+
return torch.cat((-x2, x1), dim=-1)
|
137 |
+
|
138 |
+
|
139 |
+
# copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
140 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
141 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
142 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
q (`torch.Tensor`): The query tensor.
|
146 |
+
k (`torch.Tensor`): The key tensor.
|
147 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
148 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
149 |
+
position_ids (`torch.Tensor`):
|
150 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
151 |
+
used to pass offsetted position ids when working with a KV-cache.
|
152 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
153 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
154 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
155 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
156 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
157 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
158 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
159 |
+
Returns:
|
160 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
161 |
+
"""
|
162 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
163 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
164 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
165 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
166 |
+
return q_embed, k_embed
|
167 |
+
|
168 |
+
|
169 |
+
class MistralMLP(nn.Module):
|
170 |
+
def __init__(self, config):
|
171 |
+
super().__init__()
|
172 |
+
self.config = config
|
173 |
+
self.hidden_size = config.hidden_size
|
174 |
+
self.intermediate_size = config.intermediate_size
|
175 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
176 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
177 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
178 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.act_fn(self.up_proj(x)))
|
182 |
+
|
183 |
+
|
184 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
185 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
186 |
+
"""
|
187 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
188 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
189 |
+
"""
|
190 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
191 |
+
if n_rep == 1:
|
192 |
+
return hidden_states
|
193 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
194 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
195 |
+
|
196 |
+
|
197 |
+
class MistralAttention(nn.Module):
|
198 |
+
"""
|
199 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
200 |
+
and "Generating Long Sequences with Sparse Transformers".
|
201 |
+
"""
|
202 |
+
|
203 |
+
def __init__(self, config: BambooConfig, layer_idx: Optional[int] = None):
|
204 |
+
super().__init__()
|
205 |
+
self.config = config
|
206 |
+
self.layer_idx = layer_idx
|
207 |
+
if layer_idx is None:
|
208 |
+
logger.warning_once(
|
209 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
210 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
211 |
+
"when creating this class."
|
212 |
+
)
|
213 |
+
|
214 |
+
self.hidden_size = config.hidden_size
|
215 |
+
self.num_heads = config.num_attention_heads
|
216 |
+
self.head_dim = self.hidden_size // self.num_heads
|
217 |
+
self.num_key_value_heads = config.num_key_value_heads
|
218 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
219 |
+
self.max_position_embeddings = config.max_position_embeddings
|
220 |
+
self.rope_theta = config.rope_theta
|
221 |
+
self.is_causal = True
|
222 |
+
self.attention_dropout = config.attention_dropout
|
223 |
+
|
224 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
225 |
+
raise ValueError(
|
226 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
227 |
+
f" and `num_heads`: {self.num_heads})."
|
228 |
+
)
|
229 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
230 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
231 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
232 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
233 |
+
|
234 |
+
self.rotary_emb = MistralRotaryEmbedding(
|
235 |
+
self.head_dim,
|
236 |
+
max_position_embeddings=self.max_position_embeddings,
|
237 |
+
base=self.rope_theta,
|
238 |
+
)
|
239 |
+
|
240 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
241 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
242 |
+
|
243 |
+
def forward(
|
244 |
+
self,
|
245 |
+
hidden_states: torch.Tensor,
|
246 |
+
attention_mask: Optional[torch.Tensor] = None,
|
247 |
+
position_ids: Optional[torch.LongTensor] = None,
|
248 |
+
past_key_value: Optional[Cache] = None,
|
249 |
+
output_attentions: bool = False,
|
250 |
+
use_cache: bool = False,
|
251 |
+
**kwargs,
|
252 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
253 |
+
if "padding_mask" in kwargs:
|
254 |
+
warnings.warn(
|
255 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
256 |
+
)
|
257 |
+
bsz, q_len, _ = hidden_states.size()
|
258 |
+
|
259 |
+
query_states = self.q_proj(hidden_states)
|
260 |
+
key_states = self.k_proj(hidden_states)
|
261 |
+
value_states = self.v_proj(hidden_states)
|
262 |
+
|
263 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
264 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
265 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
266 |
+
|
267 |
+
kv_seq_len = key_states.shape[-2]
|
268 |
+
if past_key_value is not None:
|
269 |
+
if self.layer_idx is None:
|
270 |
+
raise ValueError(
|
271 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
272 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
273 |
+
"with a layer index."
|
274 |
+
)
|
275 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
276 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
277 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
278 |
+
|
279 |
+
if past_key_value is not None:
|
280 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
281 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
282 |
+
|
283 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
284 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
285 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
286 |
+
|
287 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
288 |
+
|
289 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
290 |
+
raise ValueError(
|
291 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
292 |
+
f" {attn_weights.size()}"
|
293 |
+
)
|
294 |
+
|
295 |
+
if attention_mask is not None:
|
296 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
297 |
+
raise ValueError(
|
298 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
299 |
+
)
|
300 |
+
|
301 |
+
attn_weights = attn_weights + attention_mask
|
302 |
+
|
303 |
+
# upcast attention to fp32
|
304 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
305 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
306 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
307 |
+
|
308 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
309 |
+
raise ValueError(
|
310 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
311 |
+
f" {attn_output.size()}"
|
312 |
+
)
|
313 |
+
|
314 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
315 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
316 |
+
|
317 |
+
attn_output = self.o_proj(attn_output)
|
318 |
+
|
319 |
+
if not output_attentions:
|
320 |
+
attn_weights = None
|
321 |
+
|
322 |
+
return attn_output, attn_weights, past_key_value
|
323 |
+
|
324 |
+
|
325 |
+
class MistralFlashAttention2(MistralAttention):
|
326 |
+
"""
|
327 |
+
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
|
328 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
329 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
330 |
+
"""
|
331 |
+
|
332 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
333 |
+
def __init__(self, *args, **kwargs):
|
334 |
+
super().__init__(*args, **kwargs)
|
335 |
+
|
336 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
337 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
338 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
339 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
340 |
+
|
341 |
+
def forward(
|
342 |
+
self,
|
343 |
+
hidden_states: torch.Tensor,
|
344 |
+
attention_mask: Optional[torch.Tensor] = None,
|
345 |
+
position_ids: Optional[torch.LongTensor] = None,
|
346 |
+
past_key_value: Optional[Cache] = None,
|
347 |
+
output_attentions: bool = False,
|
348 |
+
use_cache: bool = False,
|
349 |
+
**kwargs,
|
350 |
+
):
|
351 |
+
if "padding_mask" in kwargs:
|
352 |
+
warnings.warn(
|
353 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
354 |
+
)
|
355 |
+
|
356 |
+
# overwrite attention_mask with padding_mask
|
357 |
+
attention_mask = kwargs.pop("padding_mask")
|
358 |
+
bsz, q_len, _ = hidden_states.size()
|
359 |
+
|
360 |
+
query_states = self.q_proj(hidden_states)
|
361 |
+
key_states = self.k_proj(hidden_states)
|
362 |
+
value_states = self.v_proj(hidden_states)
|
363 |
+
|
364 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
365 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
366 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
367 |
+
|
368 |
+
kv_seq_len = key_states.shape[-2]
|
369 |
+
if past_key_value is not None:
|
370 |
+
if self.layer_idx is None:
|
371 |
+
raise ValueError(
|
372 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
373 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
374 |
+
"with a layer index."
|
375 |
+
)
|
376 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
377 |
+
|
378 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
379 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
380 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
381 |
+
|
382 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
383 |
+
|
384 |
+
use_sliding_windows = (
|
385 |
+
_flash_supports_window_size
|
386 |
+
and getattr(self.config, "sliding_window", None) is not None
|
387 |
+
and kv_seq_len > self.config.sliding_window
|
388 |
+
)
|
389 |
+
|
390 |
+
if not _flash_supports_window_size:
|
391 |
+
logger.warning_once(
|
392 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
393 |
+
" make sure to upgrade flash-attn library."
|
394 |
+
)
|
395 |
+
|
396 |
+
if past_key_value is not None:
|
397 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
398 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
399 |
+
if (
|
400 |
+
getattr(self.config, "sliding_window", None) is not None
|
401 |
+
and kv_seq_len > self.config.sliding_window
|
402 |
+
and cache_has_contents
|
403 |
+
):
|
404 |
+
slicing_tokens = 1 - self.config.sliding_window
|
405 |
+
|
406 |
+
past_key = past_key_value[self.layer_idx][0]
|
407 |
+
past_value = past_key_value[self.layer_idx][1]
|
408 |
+
|
409 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
410 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
411 |
+
|
412 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
413 |
+
raise ValueError(
|
414 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
415 |
+
f" {past_key.shape}"
|
416 |
+
)
|
417 |
+
|
418 |
+
if attention_mask is not None:
|
419 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
420 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
421 |
+
|
422 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
423 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
424 |
+
|
425 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
426 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
427 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
428 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
429 |
+
|
430 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
431 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
432 |
+
# cast them back in float16 just to be sure everything works as expected.
|
433 |
+
input_dtype = query_states.dtype
|
434 |
+
if input_dtype == torch.float32:
|
435 |
+
if torch.is_autocast_enabled():
|
436 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
437 |
+
# Handle the case where the model is quantized
|
438 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
439 |
+
target_dtype = self.config._pre_quantization_dtype
|
440 |
+
else:
|
441 |
+
target_dtype = self.q_proj.weight.dtype
|
442 |
+
|
443 |
+
logger.warning_once(
|
444 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
445 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
446 |
+
f" {target_dtype}."
|
447 |
+
)
|
448 |
+
|
449 |
+
query_states = query_states.to(target_dtype)
|
450 |
+
key_states = key_states.to(target_dtype)
|
451 |
+
value_states = value_states.to(target_dtype)
|
452 |
+
|
453 |
+
# Reashape to the expected shape for Flash Attention
|
454 |
+
query_states = query_states.transpose(1, 2)
|
455 |
+
key_states = key_states.transpose(1, 2)
|
456 |
+
value_states = value_states.transpose(1, 2)
|
457 |
+
|
458 |
+
attn_output = self._flash_attention_forward(
|
459 |
+
query_states,
|
460 |
+
key_states,
|
461 |
+
value_states,
|
462 |
+
attention_mask,
|
463 |
+
q_len,
|
464 |
+
dropout=dropout_rate,
|
465 |
+
use_sliding_windows=use_sliding_windows,
|
466 |
+
)
|
467 |
+
|
468 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
469 |
+
attn_output = self.o_proj(attn_output)
|
470 |
+
|
471 |
+
if not output_attentions:
|
472 |
+
attn_weights = None
|
473 |
+
|
474 |
+
return attn_output, attn_weights, past_key_value
|
475 |
+
|
476 |
+
def _flash_attention_forward(
|
477 |
+
self,
|
478 |
+
query_states,
|
479 |
+
key_states,
|
480 |
+
value_states,
|
481 |
+
attention_mask,
|
482 |
+
query_length,
|
483 |
+
dropout=0.0,
|
484 |
+
softmax_scale=None,
|
485 |
+
use_sliding_windows=False,
|
486 |
+
):
|
487 |
+
"""
|
488 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
489 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
490 |
+
|
491 |
+
Args:
|
492 |
+
query_states (`torch.Tensor`):
|
493 |
+
Input query states to be passed to Flash Attention API
|
494 |
+
key_states (`torch.Tensor`):
|
495 |
+
Input key states to be passed to Flash Attention API
|
496 |
+
value_states (`torch.Tensor`):
|
497 |
+
Input value states to be passed to Flash Attention API
|
498 |
+
attention_mask (`torch.Tensor`):
|
499 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
500 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
501 |
+
dropout (`float`):
|
502 |
+
Attention dropout
|
503 |
+
softmax_scale (`float`, *optional*):
|
504 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
505 |
+
use_sliding_windows (`bool`, *optional*):
|
506 |
+
Whether to activate sliding window attention.
|
507 |
+
"""
|
508 |
+
if not self._flash_attn_uses_top_left_mask:
|
509 |
+
causal = self.is_causal
|
510 |
+
else:
|
511 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
512 |
+
causal = self.is_causal and query_length != 1
|
513 |
+
|
514 |
+
# Contains at least one padding token in the sequence
|
515 |
+
if attention_mask is not None:
|
516 |
+
batch_size = query_states.shape[0]
|
517 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
518 |
+
query_states, key_states, value_states, attention_mask, query_length
|
519 |
+
)
|
520 |
+
|
521 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
522 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
523 |
+
|
524 |
+
if not use_sliding_windows:
|
525 |
+
attn_output_unpad = flash_attn_varlen_func(
|
526 |
+
query_states,
|
527 |
+
key_states,
|
528 |
+
value_states,
|
529 |
+
cu_seqlens_q=cu_seqlens_q,
|
530 |
+
cu_seqlens_k=cu_seqlens_k,
|
531 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
532 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
533 |
+
dropout_p=dropout,
|
534 |
+
softmax_scale=softmax_scale,
|
535 |
+
causal=causal,
|
536 |
+
)
|
537 |
+
else:
|
538 |
+
attn_output_unpad = flash_attn_varlen_func(
|
539 |
+
query_states,
|
540 |
+
key_states,
|
541 |
+
value_states,
|
542 |
+
cu_seqlens_q=cu_seqlens_q,
|
543 |
+
cu_seqlens_k=cu_seqlens_k,
|
544 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
545 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
546 |
+
dropout_p=dropout,
|
547 |
+
softmax_scale=softmax_scale,
|
548 |
+
causal=causal,
|
549 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
550 |
+
)
|
551 |
+
|
552 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
553 |
+
else:
|
554 |
+
if not use_sliding_windows:
|
555 |
+
attn_output = flash_attn_func(
|
556 |
+
query_states,
|
557 |
+
key_states,
|
558 |
+
value_states,
|
559 |
+
dropout,
|
560 |
+
softmax_scale=softmax_scale,
|
561 |
+
causal=causal,
|
562 |
+
)
|
563 |
+
else:
|
564 |
+
attn_output = flash_attn_func(
|
565 |
+
query_states,
|
566 |
+
key_states,
|
567 |
+
value_states,
|
568 |
+
dropout,
|
569 |
+
softmax_scale=softmax_scale,
|
570 |
+
causal=causal,
|
571 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
572 |
+
)
|
573 |
+
|
574 |
+
return attn_output
|
575 |
+
|
576 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
577 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
578 |
+
|
579 |
+
# On the first iteration we need to properly re-create the padding mask
|
580 |
+
# by slicing it on the proper place
|
581 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
582 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
583 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
584 |
+
|
585 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
586 |
+
|
587 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
588 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
589 |
+
|
590 |
+
if query_length == kv_seq_len:
|
591 |
+
query_layer = index_first_axis(
|
592 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
593 |
+
)
|
594 |
+
cu_seqlens_q = cu_seqlens_k
|
595 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
596 |
+
indices_q = indices_k
|
597 |
+
elif query_length == 1:
|
598 |
+
max_seqlen_in_batch_q = 1
|
599 |
+
cu_seqlens_q = torch.arange(
|
600 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
601 |
+
) # There is a memcpy here, that is very bad.
|
602 |
+
indices_q = cu_seqlens_q[:-1]
|
603 |
+
query_layer = query_layer.squeeze(1)
|
604 |
+
else:
|
605 |
+
# The -q_len: slice assumes left padding.
|
606 |
+
attention_mask = attention_mask[:, -query_length:]
|
607 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
608 |
+
|
609 |
+
return (
|
610 |
+
query_layer,
|
611 |
+
key_layer,
|
612 |
+
value_layer,
|
613 |
+
indices_q,
|
614 |
+
(cu_seqlens_q, cu_seqlens_k),
|
615 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
616 |
+
)
|
617 |
+
|
618 |
+
|
619 |
+
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral
|
620 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
621 |
+
class MistralSdpaAttention(MistralAttention):
|
622 |
+
"""
|
623 |
+
Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
624 |
+
`MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
625 |
+
SDPA API.
|
626 |
+
"""
|
627 |
+
|
628 |
+
# Adapted from MistralAttention.forward
|
629 |
+
def forward(
|
630 |
+
self,
|
631 |
+
hidden_states: torch.Tensor,
|
632 |
+
attention_mask: Optional[torch.Tensor] = None,
|
633 |
+
position_ids: Optional[torch.LongTensor] = None,
|
634 |
+
past_key_value: Optional[Cache] = None,
|
635 |
+
output_attentions: bool = False,
|
636 |
+
use_cache: bool = False,
|
637 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
638 |
+
if output_attentions:
|
639 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
640 |
+
logger.warning_once(
|
641 |
+
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
642 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
643 |
+
)
|
644 |
+
return super().forward(
|
645 |
+
hidden_states=hidden_states,
|
646 |
+
attention_mask=attention_mask,
|
647 |
+
position_ids=position_ids,
|
648 |
+
past_key_value=past_key_value,
|
649 |
+
output_attentions=output_attentions,
|
650 |
+
use_cache=use_cache,
|
651 |
+
)
|
652 |
+
|
653 |
+
bsz, q_len, _ = hidden_states.size()
|
654 |
+
|
655 |
+
query_states = self.q_proj(hidden_states)
|
656 |
+
key_states = self.k_proj(hidden_states)
|
657 |
+
value_states = self.v_proj(hidden_states)
|
658 |
+
|
659 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
660 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
661 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
662 |
+
|
663 |
+
kv_seq_len = key_states.shape[-2]
|
664 |
+
if past_key_value is not None:
|
665 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
666 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
667 |
+
|
668 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
669 |
+
|
670 |
+
if past_key_value is not None:
|
671 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
672 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
673 |
+
|
674 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
675 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
676 |
+
|
677 |
+
if attention_mask is not None:
|
678 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
679 |
+
raise ValueError(
|
680 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
681 |
+
)
|
682 |
+
|
683 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
684 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
685 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
686 |
+
query_states = query_states.contiguous()
|
687 |
+
key_states = key_states.contiguous()
|
688 |
+
value_states = value_states.contiguous()
|
689 |
+
|
690 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
691 |
+
query_states,
|
692 |
+
key_states,
|
693 |
+
value_states,
|
694 |
+
attn_mask=attention_mask,
|
695 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
696 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
697 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
698 |
+
)
|
699 |
+
|
700 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
701 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
702 |
+
|
703 |
+
attn_output = self.o_proj(attn_output)
|
704 |
+
|
705 |
+
return attn_output, None, past_key_value
|
706 |
+
|
707 |
+
|
708 |
+
MISTRAL_ATTENTION_CLASSES = {
|
709 |
+
"eager": MistralAttention,
|
710 |
+
"flash_attention_2": MistralFlashAttention2,
|
711 |
+
"sdpa": MistralSdpaAttention,
|
712 |
+
}
|
713 |
+
|
714 |
+
|
715 |
+
class MistralDecoderLayer(nn.Module):
|
716 |
+
def __init__(self, config: BambooConfig, layer_idx: int):
|
717 |
+
super().__init__()
|
718 |
+
self.hidden_size = config.hidden_size
|
719 |
+
|
720 |
+
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
721 |
+
|
722 |
+
self.mlp = MistralMLP(config)
|
723 |
+
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
724 |
+
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
725 |
+
|
726 |
+
def forward(
|
727 |
+
self,
|
728 |
+
hidden_states: torch.Tensor,
|
729 |
+
attention_mask: Optional[torch.Tensor] = None,
|
730 |
+
position_ids: Optional[torch.LongTensor] = None,
|
731 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
732 |
+
output_attentions: Optional[bool] = False,
|
733 |
+
use_cache: Optional[bool] = False,
|
734 |
+
**kwargs,
|
735 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
736 |
+
if "padding_mask" in kwargs:
|
737 |
+
warnings.warn(
|
738 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
739 |
+
)
|
740 |
+
"""
|
741 |
+
Args:
|
742 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
743 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
744 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
745 |
+
output_attentions (`bool`, *optional*):
|
746 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
747 |
+
returned tensors for more detail.
|
748 |
+
use_cache (`bool`, *optional*):
|
749 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
750 |
+
(see `past_key_values`).
|
751 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
752 |
+
"""
|
753 |
+
|
754 |
+
residual = hidden_states
|
755 |
+
|
756 |
+
hidden_states = self.input_layernorm(hidden_states)
|
757 |
+
|
758 |
+
# Self Attention
|
759 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
760 |
+
hidden_states=hidden_states,
|
761 |
+
attention_mask=attention_mask,
|
762 |
+
position_ids=position_ids,
|
763 |
+
past_key_value=past_key_value,
|
764 |
+
output_attentions=output_attentions,
|
765 |
+
use_cache=use_cache,
|
766 |
+
)
|
767 |
+
hidden_states = residual + hidden_states
|
768 |
+
|
769 |
+
# Fully Connected
|
770 |
+
residual = hidden_states
|
771 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
772 |
+
hidden_states = self.mlp(hidden_states)
|
773 |
+
hidden_states = residual + hidden_states
|
774 |
+
|
775 |
+
outputs = (hidden_states,)
|
776 |
+
|
777 |
+
if output_attentions:
|
778 |
+
outputs += (self_attn_weights,)
|
779 |
+
|
780 |
+
if use_cache:
|
781 |
+
outputs += (present_key_value,)
|
782 |
+
|
783 |
+
return outputs
|
784 |
+
|
785 |
+
|
786 |
+
MISTRAL_START_DOCSTRING = r"""
|
787 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
788 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
789 |
+
etc.)
|
790 |
+
|
791 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
792 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
793 |
+
and behavior.
|
794 |
+
|
795 |
+
Parameters:
|
796 |
+
config ([`BambooConfig`]):
|
797 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
798 |
+
load the weights associated with the model, only the configuration. Check out the
|
799 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
800 |
+
"""
|
801 |
+
|
802 |
+
|
803 |
+
@add_start_docstrings(
|
804 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
805 |
+
MISTRAL_START_DOCSTRING,
|
806 |
+
)
|
807 |
+
class MistralPreTrainedModel(PreTrainedModel):
|
808 |
+
config_class = BambooConfig
|
809 |
+
base_model_prefix = "model"
|
810 |
+
supports_gradient_checkpointing = True
|
811 |
+
_no_split_modules = ["MistralDecoderLayer"]
|
812 |
+
_skip_keys_device_placement = "past_key_values"
|
813 |
+
_supports_flash_attn_2 = True
|
814 |
+
_supports_sdpa = True
|
815 |
+
_supports_cache_class = True
|
816 |
+
|
817 |
+
def _init_weights(self, module):
|
818 |
+
std = self.config.initializer_range
|
819 |
+
if isinstance(module, nn.Linear):
|
820 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
821 |
+
if module.bias is not None:
|
822 |
+
module.bias.data.zero_()
|
823 |
+
elif isinstance(module, nn.Embedding):
|
824 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
825 |
+
if module.padding_idx is not None:
|
826 |
+
module.weight.data[module.padding_idx].zero_()
|
827 |
+
|
828 |
+
|
829 |
+
MISTRAL_INPUTS_DOCSTRING = r"""
|
830 |
+
Args:
|
831 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
832 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
833 |
+
it.
|
834 |
+
|
835 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
836 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
837 |
+
|
838 |
+
[What are input IDs?](../glossary#input-ids)
|
839 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
840 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
841 |
+
|
842 |
+
- 1 for tokens that are **not masked**,
|
843 |
+
- 0 for tokens that are **masked**.
|
844 |
+
|
845 |
+
[What are attention masks?](../glossary#attention-mask)
|
846 |
+
|
847 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
848 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
849 |
+
|
850 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
851 |
+
`past_key_values`).
|
852 |
+
|
853 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
854 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
855 |
+
information on the default strategy.
|
856 |
+
|
857 |
+
- 1 indicates the head is **not masked**,
|
858 |
+
- 0 indicates the head is **masked**.
|
859 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
860 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
861 |
+
config.n_positions - 1]`.
|
862 |
+
|
863 |
+
[What are position IDs?](../glossary#position-ids)
|
864 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
865 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
866 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
867 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
868 |
+
|
869 |
+
Two formats are allowed:
|
870 |
+
- a [`~cache_utils.Cache`] instance;
|
871 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
872 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
873 |
+
cache format.
|
874 |
+
|
875 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
876 |
+
legacy cache format will be returned.
|
877 |
+
|
878 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
879 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
880 |
+
of shape `(batch_size, sequence_length)`.
|
881 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
882 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
883 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
884 |
+
model's internal embedding lookup matrix.
|
885 |
+
use_cache (`bool`, *optional*):
|
886 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
887 |
+
`past_key_values`).
|
888 |
+
output_attentions (`bool`, *optional*):
|
889 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
890 |
+
tensors for more detail.
|
891 |
+
output_hidden_states (`bool`, *optional*):
|
892 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
893 |
+
more detail.
|
894 |
+
return_dict (`bool`, *optional*):
|
895 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
896 |
+
"""
|
897 |
+
|
898 |
+
|
899 |
+
@add_start_docstrings(
|
900 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
901 |
+
MISTRAL_START_DOCSTRING,
|
902 |
+
)
|
903 |
+
class MistralModel(MistralPreTrainedModel):
|
904 |
+
"""
|
905 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
906 |
+
|
907 |
+
Args:
|
908 |
+
config: BambooConfig
|
909 |
+
"""
|
910 |
+
|
911 |
+
def __init__(self, config: BambooConfig):
|
912 |
+
super().__init__(config)
|
913 |
+
self.padding_idx = config.pad_token_id
|
914 |
+
self.vocab_size = config.vocab_size
|
915 |
+
|
916 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
917 |
+
self.layers = nn.ModuleList(
|
918 |
+
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
919 |
+
)
|
920 |
+
self._attn_implementation = config._attn_implementation
|
921 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
922 |
+
|
923 |
+
self.gradient_checkpointing = False
|
924 |
+
# Initialize weights and apply final processing
|
925 |
+
self.post_init()
|
926 |
+
|
927 |
+
def get_input_embeddings(self):
|
928 |
+
return self.embed_tokens
|
929 |
+
|
930 |
+
def set_input_embeddings(self, value):
|
931 |
+
self.embed_tokens = value
|
932 |
+
|
933 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
934 |
+
def forward(
|
935 |
+
self,
|
936 |
+
input_ids: torch.LongTensor = None,
|
937 |
+
attention_mask: Optional[torch.Tensor] = None,
|
938 |
+
position_ids: Optional[torch.LongTensor] = None,
|
939 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
940 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
941 |
+
use_cache: Optional[bool] = None,
|
942 |
+
output_attentions: Optional[bool] = None,
|
943 |
+
output_hidden_states: Optional[bool] = None,
|
944 |
+
return_dict: Optional[bool] = None,
|
945 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
946 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
947 |
+
output_hidden_states = (
|
948 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
949 |
+
)
|
950 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
951 |
+
|
952 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
953 |
+
|
954 |
+
# retrieve input_ids and inputs_embeds
|
955 |
+
if input_ids is not None and inputs_embeds is not None:
|
956 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
957 |
+
elif input_ids is not None:
|
958 |
+
batch_size, seq_length = input_ids.shape
|
959 |
+
elif inputs_embeds is not None:
|
960 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
961 |
+
else:
|
962 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
963 |
+
|
964 |
+
if self.gradient_checkpointing and self.training:
|
965 |
+
if use_cache:
|
966 |
+
logger.warning_once(
|
967 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
968 |
+
)
|
969 |
+
use_cache = False
|
970 |
+
|
971 |
+
past_key_values_length = 0
|
972 |
+
|
973 |
+
if use_cache:
|
974 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
975 |
+
if use_legacy_cache:
|
976 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
977 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
978 |
+
|
979 |
+
if position_ids is None:
|
980 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
981 |
+
position_ids = torch.arange(
|
982 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
983 |
+
)
|
984 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
985 |
+
else:
|
986 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
987 |
+
|
988 |
+
if inputs_embeds is None:
|
989 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
990 |
+
|
991 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
992 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
993 |
+
if is_padding_right:
|
994 |
+
raise ValueError(
|
995 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
996 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
997 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
998 |
+
)
|
999 |
+
|
1000 |
+
if self._attn_implementation == "flash_attention_2":
|
1001 |
+
# 2d mask is passed through the layers
|
1002 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1003 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1004 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1005 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1006 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1007 |
+
attention_mask,
|
1008 |
+
(batch_size, seq_length),
|
1009 |
+
inputs_embeds,
|
1010 |
+
past_key_values_length,
|
1011 |
+
)
|
1012 |
+
else:
|
1013 |
+
# 4d mask is passed through the layers
|
1014 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1015 |
+
attention_mask,
|
1016 |
+
(batch_size, seq_length),
|
1017 |
+
inputs_embeds,
|
1018 |
+
past_key_values_length,
|
1019 |
+
sliding_window=self.config.sliding_window,
|
1020 |
+
)
|
1021 |
+
|
1022 |
+
hidden_states = inputs_embeds
|
1023 |
+
|
1024 |
+
# decoder layers
|
1025 |
+
all_hidden_states = () if output_hidden_states else None
|
1026 |
+
all_self_attns = () if output_attentions else None
|
1027 |
+
next_decoder_cache = None
|
1028 |
+
|
1029 |
+
for decoder_layer in self.layers:
|
1030 |
+
if output_hidden_states:
|
1031 |
+
all_hidden_states += (hidden_states,)
|
1032 |
+
|
1033 |
+
if self.gradient_checkpointing and self.training:
|
1034 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1035 |
+
decoder_layer.__call__,
|
1036 |
+
hidden_states,
|
1037 |
+
attention_mask,
|
1038 |
+
position_ids,
|
1039 |
+
past_key_values,
|
1040 |
+
output_attentions,
|
1041 |
+
use_cache,
|
1042 |
+
)
|
1043 |
+
else:
|
1044 |
+
layer_outputs = decoder_layer(
|
1045 |
+
hidden_states,
|
1046 |
+
attention_mask=attention_mask,
|
1047 |
+
position_ids=position_ids,
|
1048 |
+
past_key_value=past_key_values,
|
1049 |
+
output_attentions=output_attentions,
|
1050 |
+
use_cache=use_cache,
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
hidden_states = layer_outputs[0]
|
1054 |
+
|
1055 |
+
if use_cache:
|
1056 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1057 |
+
|
1058 |
+
if output_attentions:
|
1059 |
+
all_self_attns += (layer_outputs[1],)
|
1060 |
+
|
1061 |
+
hidden_states = self.norm(hidden_states)
|
1062 |
+
|
1063 |
+
# add hidden states from the last decoder layer
|
1064 |
+
if output_hidden_states:
|
1065 |
+
all_hidden_states += (hidden_states,)
|
1066 |
+
|
1067 |
+
next_cache = None
|
1068 |
+
if use_cache:
|
1069 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1070 |
+
|
1071 |
+
if not return_dict:
|
1072 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1073 |
+
return BaseModelOutputWithPast(
|
1074 |
+
last_hidden_state=hidden_states,
|
1075 |
+
past_key_values=next_cache,
|
1076 |
+
hidden_states=all_hidden_states,
|
1077 |
+
attentions=all_self_attns,
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
|
1081 |
+
class BambooForCausalLM(MistralPreTrainedModel):
|
1082 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1083 |
+
|
1084 |
+
def __init__(self, config):
|
1085 |
+
super().__init__(config)
|
1086 |
+
self.model = MistralModel(config)
|
1087 |
+
self.vocab_size = config.vocab_size
|
1088 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1089 |
+
|
1090 |
+
# Initialize weights and apply final processing
|
1091 |
+
self.post_init()
|
1092 |
+
|
1093 |
+
def get_input_embeddings(self):
|
1094 |
+
return self.model.embed_tokens
|
1095 |
+
|
1096 |
+
def set_input_embeddings(self, value):
|
1097 |
+
self.model.embed_tokens = value
|
1098 |
+
|
1099 |
+
def get_output_embeddings(self):
|
1100 |
+
return self.lm_head
|
1101 |
+
|
1102 |
+
def set_output_embeddings(self, new_embeddings):
|
1103 |
+
self.lm_head = new_embeddings
|
1104 |
+
|
1105 |
+
def set_decoder(self, decoder):
|
1106 |
+
self.model = decoder
|
1107 |
+
|
1108 |
+
def get_decoder(self):
|
1109 |
+
return self.model
|
1110 |
+
|
1111 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1112 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1113 |
+
def forward(
|
1114 |
+
self,
|
1115 |
+
input_ids: torch.LongTensor = None,
|
1116 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1117 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1118 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1119 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1120 |
+
labels: Optional[torch.LongTensor] = None,
|
1121 |
+
use_cache: Optional[bool] = None,
|
1122 |
+
output_attentions: Optional[bool] = None,
|
1123 |
+
output_hidden_states: Optional[bool] = None,
|
1124 |
+
return_dict: Optional[bool] = None,
|
1125 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1126 |
+
r"""
|
1127 |
+
Args:
|
1128 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1129 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1130 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1131 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1132 |
+
|
1133 |
+
Returns:
|
1134 |
+
|
1135 |
+
Example:
|
1136 |
+
|
1137 |
+
```python
|
1138 |
+
>>> from transformers import AutoTokenizer, BambooForCausalLM
|
1139 |
+
|
1140 |
+
>>> model = BambooForCausalLM.from_pretrained("PowerInfer/Bamboo-base-v0.1")
|
1141 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("PowerInfer/Bamboo-base-v0.1")
|
1142 |
+
|
1143 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1144 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1145 |
+
|
1146 |
+
>>> # Generate
|
1147 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1148 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1149 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1150 |
+
```"""
|
1151 |
+
|
1152 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1153 |
+
output_hidden_states = (
|
1154 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1155 |
+
)
|
1156 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1157 |
+
|
1158 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1159 |
+
outputs = self.model(
|
1160 |
+
input_ids=input_ids,
|
1161 |
+
attention_mask=attention_mask,
|
1162 |
+
position_ids=position_ids,
|
1163 |
+
past_key_values=past_key_values,
|
1164 |
+
inputs_embeds=inputs_embeds,
|
1165 |
+
use_cache=use_cache,
|
1166 |
+
output_attentions=output_attentions,
|
1167 |
+
output_hidden_states=output_hidden_states,
|
1168 |
+
return_dict=return_dict,
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
hidden_states = outputs[0]
|
1172 |
+
logits = self.lm_head(hidden_states)
|
1173 |
+
logits = logits.float()
|
1174 |
+
|
1175 |
+
loss = None
|
1176 |
+
if labels is not None:
|
1177 |
+
# Shift so that tokens < n predict n
|
1178 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1179 |
+
shift_labels = labels[..., 1:].contiguous()
|
1180 |
+
# Flatten the tokens
|
1181 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1182 |
+
shift_labels = shift_labels.view(-1)
|
1183 |
+
# Ensure tensors are on the same device
|
1184 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1185 |
+
loss_fct = CrossEntropyLoss()
|
1186 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1187 |
+
|
1188 |
+
if not return_dict:
|
1189 |
+
output = (logits,) + outputs[1:]
|
1190 |
+
return (loss,) + output if loss is not None else output
|
1191 |
+
|
1192 |
+
return CausalLMOutputWithPast(
|
1193 |
+
loss=loss,
|
1194 |
+
logits=logits,
|
1195 |
+
past_key_values=outputs.past_key_values,
|
1196 |
+
hidden_states=outputs.hidden_states,
|
1197 |
+
attentions=outputs.attentions,
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
def prepare_inputs_for_generation(
|
1201 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1202 |
+
):
|
1203 |
+
# Omit tokens covered by past_key_values
|
1204 |
+
if past_key_values is not None:
|
1205 |
+
if isinstance(past_key_values, Cache):
|
1206 |
+
cache_length = past_key_values.get_seq_length()
|
1207 |
+
past_length = past_key_values.seen_tokens
|
1208 |
+
max_cache_length = past_key_values.get_max_length()
|
1209 |
+
else:
|
1210 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1211 |
+
max_cache_length = None
|
1212 |
+
|
1213 |
+
# Keep only the unprocessed tokens:
|
1214 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1215 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1216 |
+
# input)
|
1217 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1218 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1219 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1220 |
+
# input_ids based on the past_length.
|
1221 |
+
elif past_length < input_ids.shape[1]:
|
1222 |
+
input_ids = input_ids[:, past_length:]
|
1223 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1224 |
+
|
1225 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1226 |
+
if (
|
1227 |
+
max_cache_length is not None
|
1228 |
+
and attention_mask is not None
|
1229 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1230 |
+
):
|
1231 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1232 |
+
|
1233 |
+
position_ids = kwargs.get("position_ids", None)
|
1234 |
+
if attention_mask is not None and position_ids is None:
|
1235 |
+
# create position_ids on the fly for batch generation
|
1236 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1237 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1238 |
+
if past_key_values:
|
1239 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1240 |
+
|
1241 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1242 |
+
if inputs_embeds is not None and past_key_values is None:
|
1243 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1244 |
+
else:
|
1245 |
+
model_inputs = {"input_ids": input_ids}
|
1246 |
+
|
1247 |
+
model_inputs.update(
|
1248 |
+
{
|
1249 |
+
"position_ids": position_ids,
|
1250 |
+
"past_key_values": past_key_values,
|
1251 |
+
"use_cache": kwargs.get("use_cache"),
|
1252 |
+
"attention_mask": attention_mask,
|
1253 |
+
}
|
1254 |
+
)
|
1255 |
+
return model_inputs
|
1256 |
+
|
1257 |
+
@staticmethod
|
1258 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1259 |
+
reordered_past = ()
|
1260 |
+
for layer_past in past_key_values:
|
1261 |
+
reordered_past += (
|
1262 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1263 |
+
)
|
1264 |
+
return reordered_past
|
1265 |
+
|
1266 |
+
|
1267 |
+
@add_start_docstrings(
|
1268 |
+
"""
|
1269 |
+
The Mistral Model transformer with a sequence classification head on top (linear layer).
|
1270 |
+
|
1271 |
+
[`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1272 |
+
(e.g. GPT-2) do.
|
1273 |
+
|
1274 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1275 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1276 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1277 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1278 |
+
each row of the batch).
|
1279 |
+
""",
|
1280 |
+
MISTRAL_START_DOCSTRING,
|
1281 |
+
)
|
1282 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
|
1283 |
+
class MistralForSequenceClassification(MistralPreTrainedModel):
|
1284 |
+
def __init__(self, config):
|
1285 |
+
super().__init__(config)
|
1286 |
+
self.num_labels = config.num_labels
|
1287 |
+
self.model = MistralModel(config)
|
1288 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1289 |
+
|
1290 |
+
# Initialize weights and apply final processing
|
1291 |
+
self.post_init()
|
1292 |
+
|
1293 |
+
def get_input_embeddings(self):
|
1294 |
+
return self.model.embed_tokens
|
1295 |
+
|
1296 |
+
def set_input_embeddings(self, value):
|
1297 |
+
self.model.embed_tokens = value
|
1298 |
+
|
1299 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1300 |
+
def forward(
|
1301 |
+
self,
|
1302 |
+
input_ids: torch.LongTensor = None,
|
1303 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1304 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1305 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1306 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1307 |
+
labels: Optional[torch.LongTensor] = None,
|
1308 |
+
use_cache: Optional[bool] = None,
|
1309 |
+
output_attentions: Optional[bool] = None,
|
1310 |
+
output_hidden_states: Optional[bool] = None,
|
1311 |
+
return_dict: Optional[bool] = None,
|
1312 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1313 |
+
r"""
|
1314 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1315 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1316 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1317 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1318 |
+
"""
|
1319 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1320 |
+
|
1321 |
+
transformer_outputs = self.model(
|
1322 |
+
input_ids,
|
1323 |
+
attention_mask=attention_mask,
|
1324 |
+
position_ids=position_ids,
|
1325 |
+
past_key_values=past_key_values,
|
1326 |
+
inputs_embeds=inputs_embeds,
|
1327 |
+
use_cache=use_cache,
|
1328 |
+
output_attentions=output_attentions,
|
1329 |
+
output_hidden_states=output_hidden_states,
|
1330 |
+
return_dict=return_dict,
|
1331 |
+
)
|
1332 |
+
hidden_states = transformer_outputs[0]
|
1333 |
+
logits = self.score(hidden_states)
|
1334 |
+
|
1335 |
+
if input_ids is not None:
|
1336 |
+
batch_size = input_ids.shape[0]
|
1337 |
+
else:
|
1338 |
+
batch_size = inputs_embeds.shape[0]
|
1339 |
+
|
1340 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1341 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1342 |
+
if self.config.pad_token_id is None:
|
1343 |
+
sequence_lengths = -1
|
1344 |
+
else:
|
1345 |
+
if input_ids is not None:
|
1346 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1347 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1348 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1349 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1350 |
+
else:
|
1351 |
+
sequence_lengths = -1
|
1352 |
+
|
1353 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1354 |
+
|
1355 |
+
loss = None
|
1356 |
+
if labels is not None:
|
1357 |
+
labels = labels.to(logits.device)
|
1358 |
+
if self.config.problem_type is None:
|
1359 |
+
if self.num_labels == 1:
|
1360 |
+
self.config.problem_type = "regression"
|
1361 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1362 |
+
self.config.problem_type = "single_label_classification"
|
1363 |
+
else:
|
1364 |
+
self.config.problem_type = "multi_label_classification"
|
1365 |
+
|
1366 |
+
if self.config.problem_type == "regression":
|
1367 |
+
loss_fct = MSELoss()
|
1368 |
+
if self.num_labels == 1:
|
1369 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1370 |
+
else:
|
1371 |
+
loss = loss_fct(pooled_logits, labels)
|
1372 |
+
elif self.config.problem_type == "single_label_classification":
|
1373 |
+
loss_fct = CrossEntropyLoss()
|
1374 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1375 |
+
elif self.config.problem_type == "multi_label_classification":
|
1376 |
+
loss_fct = BCEWithLogitsLoss()
|
1377 |
+
loss = loss_fct(pooled_logits, labels)
|
1378 |
+
if not return_dict:
|
1379 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1380 |
+
return ((loss,) + output) if loss is not None else output
|
1381 |
+
|
1382 |
+
return SequenceClassifierOutputWithPast(
|
1383 |
+
loss=loss,
|
1384 |
+
logits=pooled_logits,
|
1385 |
+
past_key_values=transformer_outputs.past_key_values,
|
1386 |
+
hidden_states=transformer_outputs.hidden_states,
|
1387 |
+
attentions=transformer_outputs.attentions,
|
1388 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "<unk>",
|
38 |
+
"padding_side": "right",
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "LlamaTokenizer",
|
43 |
+
"unk_token": "<unk>",
|
44 |
+
"use_default_system_prompt": false
|
45 |
+
}
|