proasr commited on
Commit
b618c17
1 Parent(s): 6653372
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.54 +/- 16.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca6741e200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca6741e290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca6741e320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca6741e3b0>", "_build": "<function ActorCriticPolicy._build at 0x7fca6741e440>", "forward": "<function ActorCriticPolicy.forward at 0x7fca6741e4d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca6741e560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca6741e5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca6741e680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca6741e710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca6741e7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca6741e830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fca6741af40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688978349811705929, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMNkb1r3dM9WqHBPfZRYL5MquA7sByGPQAAAAAAAAAAZvdMvfY4E7rdTAk4V54LM3235DqOVx23AACAPwAAgD/m0KK9Fm0VPZpplj0KPoe+8G+hvL7+4jwAAAAAAAAAAM0RvbzhEKe65HmMtfP8prBZOFE6LYS0NAAAgD8AAIA/mvOFvZxJB7zW0yU9F7KSvMZVZb0r3nW9AACAPwAAgD9aUd29xcS5PuBWNT2rGY++gv38vTDvAj4AAAAAAAAAAMAkMj5wgcQ+YAWRvjQ+t76noqc5U3zIvAAAAAAAAAAAmgaWPK6lpLqtgCM5d9kaNHq5iTo/Kzy4AACAPwAAgD8aEL0966dHP7ETwL1iG/G+dQ3LPOZhCr0AAAAAAAAAAM1MyLzSZK8/LHwZv224+75lAIk8F9maPAAAAAAAAAAAZqbMPM8PoD9owAU+55fQvk2sIT3dDZQ9AAAAAAAAAABm9Qw9Sg97P56eNb21RMe+pCvUPRm+tL0AAAAAAAAAACZDrD7MpIk/6UUfPvJg4L7mDsA+YIcLvQAAAAAAAAAAmggMPY/YB7y78qE80+gxPaO3YL0ZtQ8+AACAPwAAgD/z0rm9juzWPq7CAD0ZQ5q+GP8fPVvohbwAAAAAAAAAAGbXQj1S84m7TuiLOzJ/VDxYMNC8SeE4PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGC+psGgSSMAWyUS/mMAXSUR0Cgoliu+yqudX2UKGgGR0BwucxqO939aAdNMwFoCEdAoKME2NvOyHV9lChoBkdAcuj0J4SpSGgHTTgBaAhHQKCjCqDsdDJ1fZQoaAZHQHAMZh8YyftoB0vyaAhHQKCjbgm7aqV1fZQoaAZHQG1mO5jH4oJoB0vtaAhHQKCjwjD8+A51fZQoaAZHQG0+d6LOzIFoB0v4aAhHQKCj99tMwlB1fZQoaAZHQHG9uw5eZ5RoB0vyaAhHQKCkgvgWJrN1fZQoaAZHQG5bplSS/0xoB0vwaAhHQKCkne5WilB1fZQoaAZHQHBVEP+XJHRoB0v/aAhHQKCksIRAbAF1fZQoaAZHQHEm7xAjY7JoB00UAWgIR0CgpOYjrzGxdX2UKGgGR0BxzxqKxcFAaAdL6mgIR0CgpOX1jAi3dX2UKGgGR0Bznmz3RG+caAdL6WgIR0CgpRVx82JjdX2UKGgGR0BuGgxYaHbiaAdL7WgIR0CgpWs3yZrpdX2UKGgGR0BygV9Brvb5aAdNAgFoCEdAoKV1Yr8R+XV9lChoBkdAcrbQ8wHqvGgHS+RoCEdAoKXhfa6BiHV9lChoBkdAbxacyWRigGgHTREBaAhHQKCmVn7Hhjx1fZQoaAZHQHFh2mpEQXhoB0vjaAhHQKCmhhky1u11fZQoaAZHQG+aHAqNIbxoB0vyaAhHQKCmuKb8WKx1fZQoaAZHQHDhjgEU0vZoB0v0aAhHQKCnhLWZqmF1fZQoaAZHQHE4OCsfaHtoB00NAWgIR0Cgp6dIGyHEdX2UKGgGR0Bztt/+bVjJaAdL7mgIR0Cgp65B1LamdX2UKGgGR0BujRx//echaAdL52gIR0CgqGq0lZ5idX2UKGgGR0By87qgRK6GaAdNAgFoCEdAoKjrYNAkcHV9lChoBkdAcLBJkGzKLmgHS/FoCEdAoKkO4iHIqHV9lChoBkdAcf7jin5zo2gHTQQBaAhHQKCpMqo60Y11fZQoaAZHQG/aSIHkcS5oB0vraAhHQKCpx0163RZ1fZQoaAZHQHCdIUrTYuloB0vZaAhHQKCqFgccU/R1fZQoaAZHQHBlGxlg+hZoB00jAWgIR0CgqjVGb1AadX2UKGgGR0BwgbAj6eoUaAdNGwFoCEdAoKpWqioKlnV9lChoBkdAcy0iaAnUlWgHTQUBaAhHQKCqXExZdOZ1fZQoaAZHQHBGzOLR8dBoB0vdaAhHQKCrZjbSJCV1fZQoaAZHQHM0OSKWLP5oB0v3aAhHQKCrrDfm9xp1fZQoaAZHQHBIOXiR4hVoB00FAWgIR0Cgq7S3solVdX2UKGgGR0BwngMCtA9naAdL8mgIR0CgrQt2TxG2dX2UKGgGR0BzHTfZVXFMaAdL+GgIR0CgrTZVfeDWdX2UKGgGR0Buc0rd30PIaAdNCAFoCEdAoK1wckt293V9lChoBkdAcIpVsUIsy2gHS/hoCEdAoLmUiyIHknV9lChoBkdAb+/7Gecx02gHS/ZoCEdAoLnB6By0bHV9lChoBkdAcETSQYDT0GgHTR8BaAhHQKC54fPHDJl1fZQoaAZHQHH1wy6+WW1oB0vaaAhHQKC57g1FYuF1fZQoaAZHQHFBoCZF5OdoB00OAWgIR0Cgugh4+r2hdX2UKGgGR0BxUNWjoIOZaAdL5GgIR0CgujtqgyuZdX2UKGgGR0BwbhaxHG0eaAdL5WgIR0CgukPVEuxsdX2UKGgGR0BwRdIEr5IpaAdL+GgIR0CgunDgqEvkdX2UKGgGR0Bze8qrilzmaAdNCwFoCEdAoLp3dhy8z3V9lChoBkdAbgIo8ZDRdGgHS+BoCEdAoLsWmixmkHV9lChoBkdAcIqJNCZ4OmgHS/JoCEdAoLspDE3sHHV9lChoBkdAXsHU9ZA6dWgHTegDaAhHQKC7SGmk30h1fZQoaAZHQHEDdQO4G2VoB0v5aAhHQKC7agDifg91fZQoaAZHQHEgRQN0/4ZoB00BAWgIR0CgvI8lHBk7dX2UKGgGR0BwV53kgfU4aAdNAQFoCEdAoLy7X4CZGHV9lChoBkdAcQ0Mcp9ZzWgHS+VoCEdAoL0o5R0lq3V9lChoBkdAb+FAyEcsDmgHTTUBaAhHQKC9VvF3pwF1fZQoaAZHQHMHsnVoYeloB0vxaAhHQKC9fTbWVeN1fZQoaAZHQHIgHOryUcJoB00HAWgIR0CgvY6ij+JhdX2UKGgGR0Bx6qyY5T60aAdL/WgIR0CgvhI2n88+dX2UKGgGR0Byme3vx6OYaAdNAgFoCEdAoL4exlg+hXV9lChoBkdAbpYIppeu3mgHTRcBaAhHQKC+Pdv863l1fZQoaAZHQHBiYomXw9doB0v+aAhHQKC+SSqU/wB1fZQoaAZHQHNuDfJmukloB00iAWgIR0Cgvk5myxA0dX2UKGgGR0BylUFdLQHBaAdNBwFoCEdAoL5s0xdpqXV9lChoBkdAcn89Dx9XtGgHS9hoCEdAoL65L7Gec3V9lChoBkdAb0TowEhaDGgHS/FoCEdAoL67lNlAeXV9lChoBkdAcoCpkwvg32gHTR4BaAhHQKC/haDf3vh1fZQoaAZHQG9qiSA6MitoB0vxaAhHQKDAJ/hl18t1fZQoaAZHQHHNGXLNfPZoB01bAWgIR0CgwE3pnpSrdX2UKGgGR0Bxypu0kWykaAdL5mgIR0CgwISJsO5KdX2UKGgGR0BxZ00ALiMpaAdNEAFoCEdAoMDLundfs3V9lChoBkdAcgpapPykK2gHS/9oCEdAoMEZlSS/03V9lChoBkdAcFCNS619fGgHS/NoCEdAoMEgEEC/5HV9lChoBkdAbyY+NcW0q2gHTQQBaAhHQKDBUEZBLPF1fZQoaAZHQHD+wgs9SuRoB0v1aAhHQKDBpMaCL/F1fZQoaAZHQHHL4RZlnRNoB00CAWgIR0CgweQeV9ncdX2UKGgGR0Bw6D9uP3i8aAdNAgFoCEdAoMISK+BYm3V9lChoBkdAcAm+VTrE+GgHTRYBaAhHQKDChZwGW2R1fZQoaAZHQHGxhDG96C1oB0v/aAhHQKDChPHDJlt1fZQoaAZHQHMqYo/iYLNoB00mAWgIR0CgwpmE4//vdX2UKGgGR0BxXaoKlYU4aAdNCAFoCEdAoMKxeeFtbnV9lChoBkdAco8Ieo1k2GgHTTABaAhHQKDCvqFh5Pd1fZQoaAZHQHGcxZ6lchVoB0vYaAhHQKDDh5N47ih1fZQoaAZHQHLnjVx0dR1oB00NAWgIR0Cgw4wco6S1dX2UKGgGR0BynjKZDzAfaAdL92gIR0Cgw8/Kp1ifdX2UKGgGR0ByL+nZTQ3QaAdL7mgIR0CgxED+irT6dX2UKGgGR0ByYaxGDtgKaAdL72gIR0CgxI+HSF4+dX2UKGgGR0ByuFHPNVzZaAdNFQFoCEdAoMST7j1f3XV9lChoBkdAcf6s6aLGaWgHS/VoCEdAoMSftF8XvnV9lChoBkdAcWxTnaFmF2gHS+RoCEdAoMUkc+7lJnV9lChoBkdAb8xrwe/5+GgHTRQBaAhHQKDFSXvYvnN1fZQoaAZHQHCeEadc0LtoB00MAWgIR0CgxXzj/+85dX2UKGgGR0BywB+XqqwRaAdL92gIR0CgxZbk4m1IdX2UKGgGR0Bwxru8brC4aAdL7mgIR0Cgxdq4H5aedX2UKGgGR0BxXIzQ/oq1aAdL+mgIR0CgxgWK/EfldX2UKGgGR0BwyZLZi/fwaAdNBwFoCEdAoMZaFK02L3V9lChoBkdAcVhbkfcN6WgHTRIBaAhHQKDGjpsXSBt1fZQoaAZHQHLCtMGorFxoB0vbaAhHQKDGoiu+yqx1fZQoaAZHQG/TEnkT6BRoB00wAWgIR0CgxueBxxT9dX2UKGgGR0ByjuyUs4DLaAdNCAFoCEdAoMdM5XEIgXV9lChoBkdAckg3hXKbKGgHS99oCEdAoMd6T+vQnnV9lChoBkdAbnBN/vv0AmgHS/BoCEdAoMgY7kn1F3V9lChoBkdAcQII1LrX2GgHTTMBaAhHQKDIQU/OdG11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 296, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae4320734bd3b26787bfea6624abb71b6d1d27906c5135c8702aee8d07961501
3
+ size 146683
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca6741e200>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca6741e290>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca6741e320>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca6741e3b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fca6741e440>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fca6741e4d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca6741e560>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca6741e5f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fca6741e680>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca6741e710>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca6741e7a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca6741e830>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fca6741af40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1212416,
25
+ "_total_timesteps": 1200000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1688978349811705929,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMNkb1r3dM9WqHBPfZRYL5MquA7sByGPQAAAAAAAAAAZvdMvfY4E7rdTAk4V54LM3235DqOVx23AACAPwAAgD/m0KK9Fm0VPZpplj0KPoe+8G+hvL7+4jwAAAAAAAAAAM0RvbzhEKe65HmMtfP8prBZOFE6LYS0NAAAgD8AAIA/mvOFvZxJB7zW0yU9F7KSvMZVZb0r3nW9AACAPwAAgD9aUd29xcS5PuBWNT2rGY++gv38vTDvAj4AAAAAAAAAAMAkMj5wgcQ+YAWRvjQ+t76noqc5U3zIvAAAAAAAAAAAmgaWPK6lpLqtgCM5d9kaNHq5iTo/Kzy4AACAPwAAgD8aEL0966dHP7ETwL1iG/G+dQ3LPOZhCr0AAAAAAAAAAM1MyLzSZK8/LHwZv224+75lAIk8F9maPAAAAAAAAAAAZqbMPM8PoD9owAU+55fQvk2sIT3dDZQ9AAAAAAAAAABm9Qw9Sg97P56eNb21RMe+pCvUPRm+tL0AAAAAAAAAACZDrD7MpIk/6UUfPvJg4L7mDsA+YIcLvQAAAAAAAAAAmggMPY/YB7y78qE80+gxPaO3YL0ZtQ8+AACAPwAAgD/z0rm9juzWPq7CAD0ZQ5q+GP8fPVvohbwAAAAAAAAAAGbXQj1S84m7TuiLOzJ/VDxYMNC8SeE4PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.010346666666666726,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGC+psGgSSMAWyUS/mMAXSUR0Cgoliu+yqudX2UKGgGR0BwucxqO939aAdNMwFoCEdAoKME2NvOyHV9lChoBkdAcuj0J4SpSGgHTTgBaAhHQKCjCqDsdDJ1fZQoaAZHQHAMZh8YyftoB0vyaAhHQKCjbgm7aqV1fZQoaAZHQG1mO5jH4oJoB0vtaAhHQKCjwjD8+A51fZQoaAZHQG0+d6LOzIFoB0v4aAhHQKCj99tMwlB1fZQoaAZHQHG9uw5eZ5RoB0vyaAhHQKCkgvgWJrN1fZQoaAZHQG5bplSS/0xoB0vwaAhHQKCkne5WilB1fZQoaAZHQHBVEP+XJHRoB0v/aAhHQKCksIRAbAF1fZQoaAZHQHEm7xAjY7JoB00UAWgIR0CgpOYjrzGxdX2UKGgGR0BxzxqKxcFAaAdL6mgIR0CgpOX1jAi3dX2UKGgGR0Bznmz3RG+caAdL6WgIR0CgpRVx82JjdX2UKGgGR0BuGgxYaHbiaAdL7WgIR0CgpWs3yZrpdX2UKGgGR0BygV9Brvb5aAdNAgFoCEdAoKV1Yr8R+XV9lChoBkdAcrbQ8wHqvGgHS+RoCEdAoKXhfa6BiHV9lChoBkdAbxacyWRigGgHTREBaAhHQKCmVn7Hhjx1fZQoaAZHQHFh2mpEQXhoB0vjaAhHQKCmhhky1u11fZQoaAZHQG+aHAqNIbxoB0vyaAhHQKCmuKb8WKx1fZQoaAZHQHDhjgEU0vZoB0v0aAhHQKCnhLWZqmF1fZQoaAZHQHE4OCsfaHtoB00NAWgIR0Cgp6dIGyHEdX2UKGgGR0Bztt/+bVjJaAdL7mgIR0Cgp65B1LamdX2UKGgGR0BujRx//echaAdL52gIR0CgqGq0lZ5idX2UKGgGR0By87qgRK6GaAdNAgFoCEdAoKjrYNAkcHV9lChoBkdAcLBJkGzKLmgHS/FoCEdAoKkO4iHIqHV9lChoBkdAcf7jin5zo2gHTQQBaAhHQKCpMqo60Y11fZQoaAZHQG/aSIHkcS5oB0vraAhHQKCpx0163RZ1fZQoaAZHQHCdIUrTYuloB0vZaAhHQKCqFgccU/R1fZQoaAZHQHBlGxlg+hZoB00jAWgIR0CgqjVGb1AadX2UKGgGR0BwgbAj6eoUaAdNGwFoCEdAoKpWqioKlnV9lChoBkdAcy0iaAnUlWgHTQUBaAhHQKCqXExZdOZ1fZQoaAZHQHBGzOLR8dBoB0vdaAhHQKCrZjbSJCV1fZQoaAZHQHM0OSKWLP5oB0v3aAhHQKCrrDfm9xp1fZQoaAZHQHBIOXiR4hVoB00FAWgIR0Cgq7S3solVdX2UKGgGR0BwngMCtA9naAdL8mgIR0CgrQt2TxG2dX2UKGgGR0BzHTfZVXFMaAdL+GgIR0CgrTZVfeDWdX2UKGgGR0Buc0rd30PIaAdNCAFoCEdAoK1wckt293V9lChoBkdAcIpVsUIsy2gHS/hoCEdAoLmUiyIHknV9lChoBkdAb+/7Gecx02gHS/ZoCEdAoLnB6By0bHV9lChoBkdAcETSQYDT0GgHTR8BaAhHQKC54fPHDJl1fZQoaAZHQHH1wy6+WW1oB0vaaAhHQKC57g1FYuF1fZQoaAZHQHFBoCZF5OdoB00OAWgIR0Cgugh4+r2hdX2UKGgGR0BxUNWjoIOZaAdL5GgIR0CgujtqgyuZdX2UKGgGR0BwbhaxHG0eaAdL5WgIR0CgukPVEuxsdX2UKGgGR0BwRdIEr5IpaAdL+GgIR0CgunDgqEvkdX2UKGgGR0Bze8qrilzmaAdNCwFoCEdAoLp3dhy8z3V9lChoBkdAbgIo8ZDRdGgHS+BoCEdAoLsWmixmkHV9lChoBkdAcIqJNCZ4OmgHS/JoCEdAoLspDE3sHHV9lChoBkdAXsHU9ZA6dWgHTegDaAhHQKC7SGmk30h1fZQoaAZHQHEDdQO4G2VoB0v5aAhHQKC7agDifg91fZQoaAZHQHEgRQN0/4ZoB00BAWgIR0CgvI8lHBk7dX2UKGgGR0BwV53kgfU4aAdNAQFoCEdAoLy7X4CZGHV9lChoBkdAcQ0Mcp9ZzWgHS+VoCEdAoL0o5R0lq3V9lChoBkdAb+FAyEcsDmgHTTUBaAhHQKC9VvF3pwF1fZQoaAZHQHMHsnVoYeloB0vxaAhHQKC9fTbWVeN1fZQoaAZHQHIgHOryUcJoB00HAWgIR0CgvY6ij+JhdX2UKGgGR0Bx6qyY5T60aAdL/WgIR0CgvhI2n88+dX2UKGgGR0Byme3vx6OYaAdNAgFoCEdAoL4exlg+hXV9lChoBkdAbpYIppeu3mgHTRcBaAhHQKC+Pdv863l1fZQoaAZHQHBiYomXw9doB0v+aAhHQKC+SSqU/wB1fZQoaAZHQHNuDfJmukloB00iAWgIR0Cgvk5myxA0dX2UKGgGR0BylUFdLQHBaAdNBwFoCEdAoL5s0xdpqXV9lChoBkdAcn89Dx9XtGgHS9hoCEdAoL65L7Gec3V9lChoBkdAb0TowEhaDGgHS/FoCEdAoL67lNlAeXV9lChoBkdAcoCpkwvg32gHTR4BaAhHQKC/haDf3vh1fZQoaAZHQG9qiSA6MitoB0vxaAhHQKDAJ/hl18t1fZQoaAZHQHHNGXLNfPZoB01bAWgIR0CgwE3pnpSrdX2UKGgGR0Bxypu0kWykaAdL5mgIR0CgwISJsO5KdX2UKGgGR0BxZ00ALiMpaAdNEAFoCEdAoMDLundfs3V9lChoBkdAcgpapPykK2gHS/9oCEdAoMEZlSS/03V9lChoBkdAcFCNS619fGgHS/NoCEdAoMEgEEC/5HV9lChoBkdAbyY+NcW0q2gHTQQBaAhHQKDBUEZBLPF1fZQoaAZHQHD+wgs9SuRoB0v1aAhHQKDBpMaCL/F1fZQoaAZHQHHL4RZlnRNoB00CAWgIR0CgweQeV9ncdX2UKGgGR0Bw6D9uP3i8aAdNAgFoCEdAoMISK+BYm3V9lChoBkdAcAm+VTrE+GgHTRYBaAhHQKDChZwGW2R1fZQoaAZHQHGxhDG96C1oB0v/aAhHQKDChPHDJlt1fZQoaAZHQHMqYo/iYLNoB00mAWgIR0CgwpmE4//vdX2UKGgGR0BxXaoKlYU4aAdNCAFoCEdAoMKxeeFtbnV9lChoBkdAco8Ieo1k2GgHTTABaAhHQKDCvqFh5Pd1fZQoaAZHQHGcxZ6lchVoB0vYaAhHQKDDh5N47ih1fZQoaAZHQHLnjVx0dR1oB00NAWgIR0Cgw4wco6S1dX2UKGgGR0BynjKZDzAfaAdL92gIR0Cgw8/Kp1ifdX2UKGgGR0ByL+nZTQ3QaAdL7mgIR0CgxED+irT6dX2UKGgGR0ByYaxGDtgKaAdL72gIR0CgxI+HSF4+dX2UKGgGR0ByuFHPNVzZaAdNFQFoCEdAoMST7j1f3XV9lChoBkdAcf6s6aLGaWgHS/VoCEdAoMSftF8XvnV9lChoBkdAcWxTnaFmF2gHS+RoCEdAoMUkc+7lJnV9lChoBkdAb8xrwe/5+GgHTRQBaAhHQKDFSXvYvnN1fZQoaAZHQHCeEadc0LtoB00MAWgIR0CgxXzj/+85dX2UKGgGR0BywB+XqqwRaAdL92gIR0CgxZbk4m1IdX2UKGgGR0Bwxru8brC4aAdL7mgIR0Cgxdq4H5aedX2UKGgGR0BxXIzQ/oq1aAdL+mgIR0CgxgWK/EfldX2UKGgGR0BwyZLZi/fwaAdNBwFoCEdAoMZaFK02L3V9lChoBkdAcVhbkfcN6WgHTRIBaAhHQKDGjpsXSBt1fZQoaAZHQHLCtMGorFxoB0vbaAhHQKDGoiu+yqx1fZQoaAZHQG/TEnkT6BRoB00wAWgIR0CgxueBxxT9dX2UKGgGR0ByjuyUs4DLaAdNCAFoCEdAoMdM5XEIgXV9lChoBkdAckg3hXKbKGgHS99oCEdAoMd6T+vQnnV9lChoBkdAbnBN/vv0AmgHS/BoCEdAoMgY7kn1F3V9lChoBkdAcQII1LrX2GgHTTMBaAhHQKDIQU/OdG11ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 296,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ed6d41e88f65d92d79fd55323675248626659feee42b32222f52ee0bc8dcda2
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:999466cf590bfab0aaf18c26b1d7d45c0a47f411b3ace0c3454ddd9c8987f7b3
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (192 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.5445647, "std_reward": 16.324961938322144, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-10T09:15:05.898289"}