first
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.54 +/- 16.32
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca6741e200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca6741e290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca6741e320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca6741e3b0>", "_build": "<function ActorCriticPolicy._build at 0x7fca6741e440>", "forward": "<function ActorCriticPolicy.forward at 0x7fca6741e4d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca6741e560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca6741e5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca6741e680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca6741e710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca6741e7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca6741e830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fca6741af40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688978349811705929, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMNkb1r3dM9WqHBPfZRYL5MquA7sByGPQAAAAAAAAAAZvdMvfY4E7rdTAk4V54LM3235DqOVx23AACAPwAAgD/m0KK9Fm0VPZpplj0KPoe+8G+hvL7+4jwAAAAAAAAAAM0RvbzhEKe65HmMtfP8prBZOFE6LYS0NAAAgD8AAIA/mvOFvZxJB7zW0yU9F7KSvMZVZb0r3nW9AACAPwAAgD9aUd29xcS5PuBWNT2rGY++gv38vTDvAj4AAAAAAAAAAMAkMj5wgcQ+YAWRvjQ+t76noqc5U3zIvAAAAAAAAAAAmgaWPK6lpLqtgCM5d9kaNHq5iTo/Kzy4AACAPwAAgD8aEL0966dHP7ETwL1iG/G+dQ3LPOZhCr0AAAAAAAAAAM1MyLzSZK8/LHwZv224+75lAIk8F9maPAAAAAAAAAAAZqbMPM8PoD9owAU+55fQvk2sIT3dDZQ9AAAAAAAAAABm9Qw9Sg97P56eNb21RMe+pCvUPRm+tL0AAAAAAAAAACZDrD7MpIk/6UUfPvJg4L7mDsA+YIcLvQAAAAAAAAAAmggMPY/YB7y78qE80+gxPaO3YL0ZtQ8+AACAPwAAgD/z0rm9juzWPq7CAD0ZQ5q+GP8fPVvohbwAAAAAAAAAAGbXQj1S84m7TuiLOzJ/VDxYMNC8SeE4PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGC+psGgSSMAWyUS/mMAXSUR0Cgoliu+yqudX2UKGgGR0BwucxqO939aAdNMwFoCEdAoKME2NvOyHV9lChoBkdAcuj0J4SpSGgHTTgBaAhHQKCjCqDsdDJ1fZQoaAZHQHAMZh8YyftoB0vyaAhHQKCjbgm7aqV1fZQoaAZHQG1mO5jH4oJoB0vtaAhHQKCjwjD8+A51fZQoaAZHQG0+d6LOzIFoB0v4aAhHQKCj99tMwlB1fZQoaAZHQHG9uw5eZ5RoB0vyaAhHQKCkgvgWJrN1fZQoaAZHQG5bplSS/0xoB0vwaAhHQKCkne5WilB1fZQoaAZHQHBVEP+XJHRoB0v/aAhHQKCksIRAbAF1fZQoaAZHQHEm7xAjY7JoB00UAWgIR0CgpOYjrzGxdX2UKGgGR0BxzxqKxcFAaAdL6mgIR0CgpOX1jAi3dX2UKGgGR0Bznmz3RG+caAdL6WgIR0CgpRVx82JjdX2UKGgGR0BuGgxYaHbiaAdL7WgIR0CgpWs3yZrpdX2UKGgGR0BygV9Brvb5aAdNAgFoCEdAoKV1Yr8R+XV9lChoBkdAcrbQ8wHqvGgHS+RoCEdAoKXhfa6BiHV9lChoBkdAbxacyWRigGgHTREBaAhHQKCmVn7Hhjx1fZQoaAZHQHFh2mpEQXhoB0vjaAhHQKCmhhky1u11fZQoaAZHQG+aHAqNIbxoB0vyaAhHQKCmuKb8WKx1fZQoaAZHQHDhjgEU0vZoB0v0aAhHQKCnhLWZqmF1fZQoaAZHQHE4OCsfaHtoB00NAWgIR0Cgp6dIGyHEdX2UKGgGR0Bztt/+bVjJaAdL7mgIR0Cgp65B1LamdX2UKGgGR0BujRx//echaAdL52gIR0CgqGq0lZ5idX2UKGgGR0By87qgRK6GaAdNAgFoCEdAoKjrYNAkcHV9lChoBkdAcLBJkGzKLmgHS/FoCEdAoKkO4iHIqHV9lChoBkdAcf7jin5zo2gHTQQBaAhHQKCpMqo60Y11fZQoaAZHQG/aSIHkcS5oB0vraAhHQKCpx0163RZ1fZQoaAZHQHCdIUrTYuloB0vZaAhHQKCqFgccU/R1fZQoaAZHQHBlGxlg+hZoB00jAWgIR0CgqjVGb1AadX2UKGgGR0BwgbAj6eoUaAdNGwFoCEdAoKpWqioKlnV9lChoBkdAcy0iaAnUlWgHTQUBaAhHQKCqXExZdOZ1fZQoaAZHQHBGzOLR8dBoB0vdaAhHQKCrZjbSJCV1fZQoaAZHQHM0OSKWLP5oB0v3aAhHQKCrrDfm9xp1fZQoaAZHQHBIOXiR4hVoB00FAWgIR0Cgq7S3solVdX2UKGgGR0BwngMCtA9naAdL8mgIR0CgrQt2TxG2dX2UKGgGR0BzHTfZVXFMaAdL+GgIR0CgrTZVfeDWdX2UKGgGR0Buc0rd30PIaAdNCAFoCEdAoK1wckt293V9lChoBkdAcIpVsUIsy2gHS/hoCEdAoLmUiyIHknV9lChoBkdAb+/7Gecx02gHS/ZoCEdAoLnB6By0bHV9lChoBkdAcETSQYDT0GgHTR8BaAhHQKC54fPHDJl1fZQoaAZHQHH1wy6+WW1oB0vaaAhHQKC57g1FYuF1fZQoaAZHQHFBoCZF5OdoB00OAWgIR0Cgugh4+r2hdX2UKGgGR0BxUNWjoIOZaAdL5GgIR0CgujtqgyuZdX2UKGgGR0BwbhaxHG0eaAdL5WgIR0CgukPVEuxsdX2UKGgGR0BwRdIEr5IpaAdL+GgIR0CgunDgqEvkdX2UKGgGR0Bze8qrilzmaAdNCwFoCEdAoLp3dhy8z3V9lChoBkdAbgIo8ZDRdGgHS+BoCEdAoLsWmixmkHV9lChoBkdAcIqJNCZ4OmgHS/JoCEdAoLspDE3sHHV9lChoBkdAXsHU9ZA6dWgHTegDaAhHQKC7SGmk30h1fZQoaAZHQHEDdQO4G2VoB0v5aAhHQKC7agDifg91fZQoaAZHQHEgRQN0/4ZoB00BAWgIR0CgvI8lHBk7dX2UKGgGR0BwV53kgfU4aAdNAQFoCEdAoLy7X4CZGHV9lChoBkdAcQ0Mcp9ZzWgHS+VoCEdAoL0o5R0lq3V9lChoBkdAb+FAyEcsDmgHTTUBaAhHQKC9VvF3pwF1fZQoaAZHQHMHsnVoYeloB0vxaAhHQKC9fTbWVeN1fZQoaAZHQHIgHOryUcJoB00HAWgIR0CgvY6ij+JhdX2UKGgGR0Bx6qyY5T60aAdL/WgIR0CgvhI2n88+dX2UKGgGR0Byme3vx6OYaAdNAgFoCEdAoL4exlg+hXV9lChoBkdAbpYIppeu3mgHTRcBaAhHQKC+Pdv863l1fZQoaAZHQHBiYomXw9doB0v+aAhHQKC+SSqU/wB1fZQoaAZHQHNuDfJmukloB00iAWgIR0Cgvk5myxA0dX2UKGgGR0BylUFdLQHBaAdNBwFoCEdAoL5s0xdpqXV9lChoBkdAcn89Dx9XtGgHS9hoCEdAoL65L7Gec3V9lChoBkdAb0TowEhaDGgHS/FoCEdAoL67lNlAeXV9lChoBkdAcoCpkwvg32gHTR4BaAhHQKC/haDf3vh1fZQoaAZHQG9qiSA6MitoB0vxaAhHQKDAJ/hl18t1fZQoaAZHQHHNGXLNfPZoB01bAWgIR0CgwE3pnpSrdX2UKGgGR0Bxypu0kWykaAdL5mgIR0CgwISJsO5KdX2UKGgGR0BxZ00ALiMpaAdNEAFoCEdAoMDLundfs3V9lChoBkdAcgpapPykK2gHS/9oCEdAoMEZlSS/03V9lChoBkdAcFCNS619fGgHS/NoCEdAoMEgEEC/5HV9lChoBkdAbyY+NcW0q2gHTQQBaAhHQKDBUEZBLPF1fZQoaAZHQHD+wgs9SuRoB0v1aAhHQKDBpMaCL/F1fZQoaAZHQHHL4RZlnRNoB00CAWgIR0CgweQeV9ncdX2UKGgGR0Bw6D9uP3i8aAdNAgFoCEdAoMISK+BYm3V9lChoBkdAcAm+VTrE+GgHTRYBaAhHQKDChZwGW2R1fZQoaAZHQHGxhDG96C1oB0v/aAhHQKDChPHDJlt1fZQoaAZHQHMqYo/iYLNoB00mAWgIR0CgwpmE4//vdX2UKGgGR0BxXaoKlYU4aAdNCAFoCEdAoMKxeeFtbnV9lChoBkdAco8Ieo1k2GgHTTABaAhHQKDCvqFh5Pd1fZQoaAZHQHGcxZ6lchVoB0vYaAhHQKDDh5N47ih1fZQoaAZHQHLnjVx0dR1oB00NAWgIR0Cgw4wco6S1dX2UKGgGR0BynjKZDzAfaAdL92gIR0Cgw8/Kp1ifdX2UKGgGR0ByL+nZTQ3QaAdL7mgIR0CgxED+irT6dX2UKGgGR0ByYaxGDtgKaAdL72gIR0CgxI+HSF4+dX2UKGgGR0ByuFHPNVzZaAdNFQFoCEdAoMST7j1f3XV9lChoBkdAcf6s6aLGaWgHS/VoCEdAoMSftF8XvnV9lChoBkdAcWxTnaFmF2gHS+RoCEdAoMUkc+7lJnV9lChoBkdAb8xrwe/5+GgHTRQBaAhHQKDFSXvYvnN1fZQoaAZHQHCeEadc0LtoB00MAWgIR0CgxXzj/+85dX2UKGgGR0BywB+XqqwRaAdL92gIR0CgxZbk4m1IdX2UKGgGR0Bwxru8brC4aAdL7mgIR0Cgxdq4H5aedX2UKGgGR0BxXIzQ/oq1aAdL+mgIR0CgxgWK/EfldX2UKGgGR0BwyZLZi/fwaAdNBwFoCEdAoMZaFK02L3V9lChoBkdAcVhbkfcN6WgHTRIBaAhHQKDGjpsXSBt1fZQoaAZHQHLCtMGorFxoB0vbaAhHQKDGoiu+yqx1fZQoaAZHQG/TEnkT6BRoB00wAWgIR0CgxueBxxT9dX2UKGgGR0ByjuyUs4DLaAdNCAFoCEdAoMdM5XEIgXV9lChoBkdAckg3hXKbKGgHS99oCEdAoMd6T+vQnnV9lChoBkdAbnBN/vv0AmgHS/BoCEdAoMgY7kn1F3V9lChoBkdAcQII1LrX2GgHTTMBaAhHQKDIQU/OdG11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 296, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae4320734bd3b26787bfea6624abb71b6d1d27906c5135c8702aee8d07961501
|
3 |
+
size 146683
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fca6741e200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca6741e290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca6741e320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca6741e3b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fca6741e440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fca6741e4d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca6741e560>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca6741e5f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fca6741e680>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca6741e710>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca6741e7a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca6741e830>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fca6741af40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1212416,
|
25 |
+
"_total_timesteps": 1200000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688978349811705929,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMNkb1r3dM9WqHBPfZRYL5MquA7sByGPQAAAAAAAAAAZvdMvfY4E7rdTAk4V54LM3235DqOVx23AACAPwAAgD/m0KK9Fm0VPZpplj0KPoe+8G+hvL7+4jwAAAAAAAAAAM0RvbzhEKe65HmMtfP8prBZOFE6LYS0NAAAgD8AAIA/mvOFvZxJB7zW0yU9F7KSvMZVZb0r3nW9AACAPwAAgD9aUd29xcS5PuBWNT2rGY++gv38vTDvAj4AAAAAAAAAAMAkMj5wgcQ+YAWRvjQ+t76noqc5U3zIvAAAAAAAAAAAmgaWPK6lpLqtgCM5d9kaNHq5iTo/Kzy4AACAPwAAgD8aEL0966dHP7ETwL1iG/G+dQ3LPOZhCr0AAAAAAAAAAM1MyLzSZK8/LHwZv224+75lAIk8F9maPAAAAAAAAAAAZqbMPM8PoD9owAU+55fQvk2sIT3dDZQ9AAAAAAAAAABm9Qw9Sg97P56eNb21RMe+pCvUPRm+tL0AAAAAAAAAACZDrD7MpIk/6UUfPvJg4L7mDsA+YIcLvQAAAAAAAAAAmggMPY/YB7y78qE80+gxPaO3YL0ZtQ8+AACAPwAAgD/z0rm9juzWPq7CAD0ZQ5q+GP8fPVvohbwAAAAAAAAAAGbXQj1S84m7TuiLOzJ/VDxYMNC8SeE4PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.010346666666666726,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGC+psGgSSMAWyUS/mMAXSUR0Cgoliu+yqudX2UKGgGR0BwucxqO939aAdNMwFoCEdAoKME2NvOyHV9lChoBkdAcuj0J4SpSGgHTTgBaAhHQKCjCqDsdDJ1fZQoaAZHQHAMZh8YyftoB0vyaAhHQKCjbgm7aqV1fZQoaAZHQG1mO5jH4oJoB0vtaAhHQKCjwjD8+A51fZQoaAZHQG0+d6LOzIFoB0v4aAhHQKCj99tMwlB1fZQoaAZHQHG9uw5eZ5RoB0vyaAhHQKCkgvgWJrN1fZQoaAZHQG5bplSS/0xoB0vwaAhHQKCkne5WilB1fZQoaAZHQHBVEP+XJHRoB0v/aAhHQKCksIRAbAF1fZQoaAZHQHEm7xAjY7JoB00UAWgIR0CgpOYjrzGxdX2UKGgGR0BxzxqKxcFAaAdL6mgIR0CgpOX1jAi3dX2UKGgGR0Bznmz3RG+caAdL6WgIR0CgpRVx82JjdX2UKGgGR0BuGgxYaHbiaAdL7WgIR0CgpWs3yZrpdX2UKGgGR0BygV9Brvb5aAdNAgFoCEdAoKV1Yr8R+XV9lChoBkdAcrbQ8wHqvGgHS+RoCEdAoKXhfa6BiHV9lChoBkdAbxacyWRigGgHTREBaAhHQKCmVn7Hhjx1fZQoaAZHQHFh2mpEQXhoB0vjaAhHQKCmhhky1u11fZQoaAZHQG+aHAqNIbxoB0vyaAhHQKCmuKb8WKx1fZQoaAZHQHDhjgEU0vZoB0v0aAhHQKCnhLWZqmF1fZQoaAZHQHE4OCsfaHtoB00NAWgIR0Cgp6dIGyHEdX2UKGgGR0Bztt/+bVjJaAdL7mgIR0Cgp65B1LamdX2UKGgGR0BujRx//echaAdL52gIR0CgqGq0lZ5idX2UKGgGR0By87qgRK6GaAdNAgFoCEdAoKjrYNAkcHV9lChoBkdAcLBJkGzKLmgHS/FoCEdAoKkO4iHIqHV9lChoBkdAcf7jin5zo2gHTQQBaAhHQKCpMqo60Y11fZQoaAZHQG/aSIHkcS5oB0vraAhHQKCpx0163RZ1fZQoaAZHQHCdIUrTYuloB0vZaAhHQKCqFgccU/R1fZQoaAZHQHBlGxlg+hZoB00jAWgIR0CgqjVGb1AadX2UKGgGR0BwgbAj6eoUaAdNGwFoCEdAoKpWqioKlnV9lChoBkdAcy0iaAnUlWgHTQUBaAhHQKCqXExZdOZ1fZQoaAZHQHBGzOLR8dBoB0vdaAhHQKCrZjbSJCV1fZQoaAZHQHM0OSKWLP5oB0v3aAhHQKCrrDfm9xp1fZQoaAZHQHBIOXiR4hVoB00FAWgIR0Cgq7S3solVdX2UKGgGR0BwngMCtA9naAdL8mgIR0CgrQt2TxG2dX2UKGgGR0BzHTfZVXFMaAdL+GgIR0CgrTZVfeDWdX2UKGgGR0Buc0rd30PIaAdNCAFoCEdAoK1wckt293V9lChoBkdAcIpVsUIsy2gHS/hoCEdAoLmUiyIHknV9lChoBkdAb+/7Gecx02gHS/ZoCEdAoLnB6By0bHV9lChoBkdAcETSQYDT0GgHTR8BaAhHQKC54fPHDJl1fZQoaAZHQHH1wy6+WW1oB0vaaAhHQKC57g1FYuF1fZQoaAZHQHFBoCZF5OdoB00OAWgIR0Cgugh4+r2hdX2UKGgGR0BxUNWjoIOZaAdL5GgIR0CgujtqgyuZdX2UKGgGR0BwbhaxHG0eaAdL5WgIR0CgukPVEuxsdX2UKGgGR0BwRdIEr5IpaAdL+GgIR0CgunDgqEvkdX2UKGgGR0Bze8qrilzmaAdNCwFoCEdAoLp3dhy8z3V9lChoBkdAbgIo8ZDRdGgHS+BoCEdAoLsWmixmkHV9lChoBkdAcIqJNCZ4OmgHS/JoCEdAoLspDE3sHHV9lChoBkdAXsHU9ZA6dWgHTegDaAhHQKC7SGmk30h1fZQoaAZHQHEDdQO4G2VoB0v5aAhHQKC7agDifg91fZQoaAZHQHEgRQN0/4ZoB00BAWgIR0CgvI8lHBk7dX2UKGgGR0BwV53kgfU4aAdNAQFoCEdAoLy7X4CZGHV9lChoBkdAcQ0Mcp9ZzWgHS+VoCEdAoL0o5R0lq3V9lChoBkdAb+FAyEcsDmgHTTUBaAhHQKC9VvF3pwF1fZQoaAZHQHMHsnVoYeloB0vxaAhHQKC9fTbWVeN1fZQoaAZHQHIgHOryUcJoB00HAWgIR0CgvY6ij+JhdX2UKGgGR0Bx6qyY5T60aAdL/WgIR0CgvhI2n88+dX2UKGgGR0Byme3vx6OYaAdNAgFoCEdAoL4exlg+hXV9lChoBkdAbpYIppeu3mgHTRcBaAhHQKC+Pdv863l1fZQoaAZHQHBiYomXw9doB0v+aAhHQKC+SSqU/wB1fZQoaAZHQHNuDfJmukloB00iAWgIR0Cgvk5myxA0dX2UKGgGR0BylUFdLQHBaAdNBwFoCEdAoL5s0xdpqXV9lChoBkdAcn89Dx9XtGgHS9hoCEdAoL65L7Gec3V9lChoBkdAb0TowEhaDGgHS/FoCEdAoL67lNlAeXV9lChoBkdAcoCpkwvg32gHTR4BaAhHQKC/haDf3vh1fZQoaAZHQG9qiSA6MitoB0vxaAhHQKDAJ/hl18t1fZQoaAZHQHHNGXLNfPZoB01bAWgIR0CgwE3pnpSrdX2UKGgGR0Bxypu0kWykaAdL5mgIR0CgwISJsO5KdX2UKGgGR0BxZ00ALiMpaAdNEAFoCEdAoMDLundfs3V9lChoBkdAcgpapPykK2gHS/9oCEdAoMEZlSS/03V9lChoBkdAcFCNS619fGgHS/NoCEdAoMEgEEC/5HV9lChoBkdAbyY+NcW0q2gHTQQBaAhHQKDBUEZBLPF1fZQoaAZHQHD+wgs9SuRoB0v1aAhHQKDBpMaCL/F1fZQoaAZHQHHL4RZlnRNoB00CAWgIR0CgweQeV9ncdX2UKGgGR0Bw6D9uP3i8aAdNAgFoCEdAoMISK+BYm3V9lChoBkdAcAm+VTrE+GgHTRYBaAhHQKDChZwGW2R1fZQoaAZHQHGxhDG96C1oB0v/aAhHQKDChPHDJlt1fZQoaAZHQHMqYo/iYLNoB00mAWgIR0CgwpmE4//vdX2UKGgGR0BxXaoKlYU4aAdNCAFoCEdAoMKxeeFtbnV9lChoBkdAco8Ieo1k2GgHTTABaAhHQKDCvqFh5Pd1fZQoaAZHQHGcxZ6lchVoB0vYaAhHQKDDh5N47ih1fZQoaAZHQHLnjVx0dR1oB00NAWgIR0Cgw4wco6S1dX2UKGgGR0BynjKZDzAfaAdL92gIR0Cgw8/Kp1ifdX2UKGgGR0ByL+nZTQ3QaAdL7mgIR0CgxED+irT6dX2UKGgGR0ByYaxGDtgKaAdL72gIR0CgxI+HSF4+dX2UKGgGR0ByuFHPNVzZaAdNFQFoCEdAoMST7j1f3XV9lChoBkdAcf6s6aLGaWgHS/VoCEdAoMSftF8XvnV9lChoBkdAcWxTnaFmF2gHS+RoCEdAoMUkc+7lJnV9lChoBkdAb8xrwe/5+GgHTRQBaAhHQKDFSXvYvnN1fZQoaAZHQHCeEadc0LtoB00MAWgIR0CgxXzj/+85dX2UKGgGR0BywB+XqqwRaAdL92gIR0CgxZbk4m1IdX2UKGgGR0Bwxru8brC4aAdL7mgIR0Cgxdq4H5aedX2UKGgGR0BxXIzQ/oq1aAdL+mgIR0CgxgWK/EfldX2UKGgGR0BwyZLZi/fwaAdNBwFoCEdAoMZaFK02L3V9lChoBkdAcVhbkfcN6WgHTRIBaAhHQKDGjpsXSBt1fZQoaAZHQHLCtMGorFxoB0vbaAhHQKDGoiu+yqx1fZQoaAZHQG/TEnkT6BRoB00wAWgIR0CgxueBxxT9dX2UKGgGR0ByjuyUs4DLaAdNCAFoCEdAoMdM5XEIgXV9lChoBkdAckg3hXKbKGgHS99oCEdAoMd6T+vQnnV9lChoBkdAbnBN/vv0AmgHS/BoCEdAoMgY7kn1F3V9lChoBkdAcQII1LrX2GgHTTMBaAhHQKDIQU/OdG11ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 296,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ed6d41e88f65d92d79fd55323675248626659feee42b32222f52ee0bc8dcda2
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:999466cf590bfab0aaf18c26b1d7d45c0a47f411b3ace0c3454ddd9c8987f7b3
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (192 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.5445647, "std_reward": 16.324961938322144, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-10T09:15:05.898289"}
|