File size: 3,283 Bytes
523624c ba5e32a 233f9b5 ba5e32a 523624c 32caff2 8f5eb2f a354cb8 c30eb35 ce6b975 2bdf378 2b83939 4e9f443 a49c832 19c2d6d d8b3a5b 233f9b5 ba5e32a 523624c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: google/vit-base-patch32-384
tags:
- generated_from_keras_callback
model-index:
- name: Prahas10/roof-test
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Prahas10/roof-test
This model is a fine-tuned version of [google/vit-base-patch32-384](https://huggingface.co/google/vit-base-patch32-384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0637
- Validation Loss: 0.1264
- Train Accuracy: 0.9474
- Epoch: 28
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 4e-05, 'decay_steps': 3990, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.0001}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 2.6939 | 2.4863 | 0.2807 | 0 |
| 2.1820 | 2.2454 | 0.4912 | 1 |
| 1.8026 | 1.8798 | 0.4912 | 2 |
| 1.4641 | 1.6673 | 0.5439 | 3 |
| 1.1288 | 1.3594 | 0.6842 | 4 |
| 0.9426 | 1.0517 | 0.8070 | 5 |
| 0.6577 | 0.8531 | 0.8421 | 6 |
| 0.5025 | 0.6971 | 0.8772 | 7 |
| 0.3976 | 0.5785 | 0.8596 | 8 |
| 0.3052 | 0.5568 | 0.9123 | 9 |
| 0.2562 | 0.5137 | 0.8947 | 10 |
| 0.3250 | 0.4415 | 0.9298 | 11 |
| 0.2773 | 0.8003 | 0.7368 | 12 |
| 0.2694 | 0.4544 | 0.8421 | 13 |
| 0.2180 | 0.5179 | 0.8947 | 14 |
| 0.1515 | 0.3450 | 0.9825 | 15 |
| 0.1386 | 0.2818 | 0.9825 | 16 |
| 0.1058 | 0.1962 | 0.9649 | 17 |
| 0.0724 | 0.2456 | 0.9825 | 18 |
| 0.0604 | 0.2432 | 0.9649 | 19 |
| 0.0718 | 0.2548 | 1.0 | 20 |
| 0.0507 | 0.2760 | 0.9474 | 21 |
| 0.0453 | 0.1565 | 0.9825 | 22 |
| 0.0274 | 0.1377 | 0.9825 | 23 |
| 0.0396 | 0.1906 | 0.9649 | 24 |
| 0.0360 | 0.1217 | 0.9825 | 25 |
| 0.0307 | 0.2234 | 0.9474 | 26 |
| 0.0427 | 0.2861 | 0.9298 | 27 |
| 0.0637 | 0.1264 | 0.9474 | 28 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.2
|