PranavHonrao's picture
Upload logic for the mars agent to Hub
72710f3
raw
history blame
14.1 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efba04020e0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efba0402170>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efba0402200>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efba0402290>",
"_build": "<function ActorCriticPolicy._build at 0x7efba0402320>",
"forward": "<function ActorCriticPolicy.forward at 0x7efba04023b0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efba0402440>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efba04024d0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7efba0402560>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efba04025f0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efba0402680>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efba0402710>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7efba039dc40>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1703471728168642305,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpi1D1Ix4O6OsDFug2gs7UtE9i5EI3mOQAAAAAAAIA/DdaCPY/ecLpifJE7K1aIOA00irsXuh26AACAPwAAgD9NiMk+M3teP4bsFz4ySJa+jA1pPpjQab0AAAAAAAAAAGY51jyPykK6oKRfOXeLpzT6Oik7NyiDuAAAgD8AAIA/ZopevY86Krork+Q5BLHxNQ45Ezsg1Qa5AACAPwAAgD9mb3y94S6Dug6qPrpBwQc2HOFyO8alWTkAAIA/AACAPw3Br746MYU/vI6lvnkBqr56/Gy+6l9XvQAAAAAAAAAA5pFLPRmSmD/151O9FAJsvhv2Ez0KEXy9AAAAAAAAAACNyry99ohiup5E2rviKs+2TXEDOxKhPTYAAAAAAAAAAKbw9L2a7ds+wEVIvXbNtr70Cse7whwGPQAAAAAAAAAAJku8vY8+broiPBa5QdaFtvkqN7pK8y44AACAPwAAgD/K248+WwGePxcIhj7fhFy+5r9pPiZO57wAAAAAAAAAADqmIr5SrtI6otTjPHbqHTyWHeG9WolYPQAAgD8AAIA/zYwcO1ynZLqMdLs5t2MyNUERFjvAzdm4AACAPwAAgD+zwMW9j9YVul/+RblzGo41D+BROy69ZDgAAIA/AACAPw3DNz59LYQ+PuWGvivLab4k3369jqiYvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOjd/rjYI2MAWyUTegDjAF0lEdAkfq7srupj3V9lChoBkdAYHxHmRvFWGgHTegDaAhHQJH7VPtUn5V1fZQoaAZHQF9hEXLvCuVoB03oA2gIR0CSAF3sHB1tdX2UKGgGR0BbqSlnAZbZaAdN6ANoCEdAkgdfaURnOHV9lChoBkdANTmxUvPC22gHTSoBaAhHQJIKT0ulGgB1fZQoaAZHQGFvvomois5oB03oA2gIR0CSDONqgyuZdX2UKGgGR0Bga6uhbnoxaAdN6ANoCEdAkg1OHSF493V9lChoBkdAZIiuxKQJX2gHTegDaAhHQJIjt99c8kl1fZQoaAZHQGEl4MnZ00ZoB03oA2gIR0CSJPbKifxudX2UKGgGR0Bi7O7FsHjZaAdN6ANoCEdAkiT4BBAv+XV9lChoBkdAY2auGKyfMGgHTegDaAhHQJIsxhMJyAB1fZQoaAZHQGSYmDtgKF9oB03oA2gIR0CSMg4+KTB7dX2UKGgGR0BjVKvC/GlzaAdN6ANoCEdAkjU0/OdGzHV9lChoBkdAYU9Kf4AS4GgHTegDaAhHQJI8QTyrgfl1fZQoaAZHQF9dZAY51eVoB03oA2gIR0CSSvltTDO1dX2UKGgGR0BmRN8E3bVSaAdN6ANoCEdAklIzVYp2EHV9lChoBkdAY2ATfR/mT2gHTegDaAhHQJJSzexfOUt1fZQoaAZHQGCxeFtbcGloB03oA2gIR0CSU3ZQ53kgdX2UKGgGR0BktbmKZUkwaAdN6ANoCEdAklhvFJg9eXV9lChoBkdAZFMsiB5HE2gHTegDaAhHQJJedlAeJYV1fZQoaAZHQGAElmnO0LNoB03oA2gIR0CSYOxNIsiCdX2UKGgGR0BkP+AEt/WlaAdN6ANoCEdAkmNx20Re1XV9lChoBkdAZo7T0g8r7WgHTegDaAhHQJJj125hBqt1fZQoaAZHQGSGlXA/LTxoB03oA2gIR0CSfQf6GgzydX2UKGgGR0Bj4QGUwBYFaAdN6ANoCEdAkn4xV6u4gHV9lChoBkdAY6v6eoUBXGgHTegDaAhHQJJ+MgPmPo51fZQoaAZHQDU8HryDqW1oB0v7aAhHQJKAD6DXe3x1fZQoaAZHQE2loEB8x9JoB0v6aAhHQJKEqH9FWn11fZQoaAZHQGMGYZ/CqIdoB03oA2gIR0CShSd/rjYJdX2UKGgGR0BhVNk1/DtPaAdN6ANoCEdAkomhkupS8HV9lChoBkdAb6qaScLBsWgHTYsBaAhHQJKKS11GLDR1fZQoaAZHQGFusHjZL7JoB03oA2gIR0CSi651Ng0CdX2UKGgGR0BjKM2UB4lhaAdN6ANoCEdAkpA0LpiZv3V9lChoBkdAbOvOt4iX6mgHTXIBaAhHQJKVdW2gFot1fZQoaAZHQE0MJrLyMDRoB00BAWgIR0CSmRggow23dX2UKGgGR0BflD2Jzkp7aAdN6ANoCEdAkpzzGkvboXV9lChoBkdAZVE/20zCUGgHTegDaAhHQJKk6/bj94x1fZQoaAZHQGPFmetjkMloB03oA2gIR0CSpZ8UEgW8dX2UKGgGR0Bl+qmoBJZoaAdN6ANoCEdAkqZdqk/KQ3V9lChoBkdAZOQX40uUU2gHTegDaAhHQJKq2kwevIR1fZQoaAZHQDuRFNL127poB005AWgIR0CSrEeBxxT9dX2UKGgGR0AL25BkZrHmaAdNFAFoCEdAkrA7Xg9/0HV9lChoBkdAXbIs/Y8MeGgHTegDaAhHQJK1VipeeFt1fZQoaAZHQGSPNTDO1OVoB03oA2gIR0CSvIY6nzg/dX2UKGgGR0Bf/03S8an8aAdN6ANoCEdAks6/5ckdFXV9lChoBkdAYrj3cHnln2gHTegDaAhHQJLOxV94NZx1fZQoaAZHQGMvbgjyFwloB03oA2gIR0CS2Apy6tkndX2UKGgGR0BfaSX6ZYxMaAdN6ANoCEdAkti5yyUs4HV9lChoBkdAY4FznRsuWmgHTegDaAhHQJLeFJxvNvB1fZQoaAZHQGUz4Ds+mnBoB03oA2gIR0CS33MRYigTdX2UKGgGR0ByMwQK8cuKaAdNkQJoCEdAkuEvw/gR9XV9lChoBkdAZZicqe9SM2gHTegDaAhHQJLjj3Hq/ud1fZQoaAZHQFtM/lhgE2ZoB03oA2gIR0CS62uGKyfMdX2UKGgGR0BeiF5Sm65HaAdN6ANoCEdAkvQigoPTX3V9lChoBkdAZBAmzjWCmWgHTegDaAhHQJL0plqagEl1fZQoaAZHQF+ViQT238ZoB03oA2gIR0CS+h+gUUO/dX2UKGgGR0BjjEI5YHPeaAdN6ANoCEdAkvuS/wiJO3V9lChoBkdAZZBeiSJTEWgHTegDaAhHQJL/0aWHDaZ1fZQoaAZHQGRhiZv1lGxoB03oA2gIR0CTBY4Z/CqIdX2UKGgGR0A4yKx9oexOaAdNFAFoCEdAkwd7z06HTXV9lChoBkdAYagVpKzzE2gHTegDaAhHQJMPkS39aU11fZQoaAZHQGZGnrY5DJFoB03oA2gIR0CTEYE12q1gdX2UKGgGR0BfzR37k4m1aAdN6ANoCEdAkxGFrEcbSHV9lChoBkdAWg275Ec81WgHTegDaAhHQJMuUDJU5uJ1fZQoaAZHQGI1RjjJdSloB03oA2gIR0CTLs09QoCudX2UKGgGR0A4ZnAZbY9QaAdNDAFoCEdAkzA4zeoDPnV9lChoBkdAZVzH3lCCz2gHTegDaAhHQJMz41ivxH51fZQoaAZHQGHjltKqXF9oB03oA2gIR0CTNUw5NoJzdX2UKGgGR0BkcEnkT6BRaAdN6ANoCEdAkzcEFjd56nV9lChoBkdAXUulzltCRmgHTegDaAhHQJM5Vb0OEuh1fZQoaAZHQGAX1Fpfx+doB03oA2gIR0CTQQjPfKp2dX2UKGgGR0BGHujIq9XcaAdNQAFoCEdAk0fQQDmr83V9lChoBkdANlZKnNxEOWgHTQwBaAhHQJNJ61w5vLp1fZQoaAZHQGKzkV32VVxoB03oA2gIR0CTStS1Vo6CdX2UKGgGR0BiKAACGN70aAdN6ANoCEdAk1JWthd+onV9lChoBkdAYdEEL6UJOWgHTegDaAhHQJNToQAdXDF1fZQoaAZHQGGbsxXXAdpoB03oA2gIR0CTVyFbFCLNdX2UKGgGR0AEWmce8wpOaAdNDgFoCEdAk1nEygwoLHV9lChoBkdAXwcpLEk0JmgHTegDaAhHQJNbWro4dZJ1fZQoaAZHQGc34287IT5oB03oA2gIR0CTYXsMAmzCdX2UKGgGR0BJgNNi6QNkaAdNFgFoCEdAk2KGm+Cbt3V9lChoBkdAYbFPSDyvtGgHTegDaAhHQJNirfyf+S91fZQoaAZHQGHHNGus90RoB03oA2gIR0CTYq/lyR0VdX2UKGgGR0BleBbKRuCPaAdN6ANoCEdAk3kvBacI7nV9lChoBkdAZg5SqEOAiGgHTegDaAhHQJN5n+uNgjR1fZQoaAZHQGYccXN1QqJoB03oA2gIR0CTe1bO/tY0dX2UKGgGR0BjTfCj1wo9aAdN6ANoCEdAk3/7Ackt3HV9lChoBkdAY2QFFlTWG2gHTegDaAhHQJOEUfcN6Pd1fZQoaAZHQGYbpw0fozNoB03oA2gIR0CTkFMhouf3dX2UKGgGR0BmN6JAMUh3aAdN6ANoCEdAk5jh6By0bHV9lChoBkdAY5XsguAZsWgHTegDaAhHQJOZtGgBcRl1fZQoaAZHQGAkzLOiWVxoB03oA2gIR0CToBX0oSctdX2UKGgGR0BPvvXkHUtqaAdNHgFoCEdAk6OK6BiCrnV9lChoBkdAYTR2r4nF52gHTegDaAhHQJOl3DO1OTJ1fZQoaAZHQGAquLzf779oB03oA2gIR0CTqP8c+7lJdX2UKGgGR0BhfTHyVfNSaAdN6ANoCEdAk6rTZg5R0nV9lChoBkdAZvve/Ho5gmgHTegDaAhHQJOzyG0u14R1fZQoaAZHQGQgcG9pRGdoB03oA2gIR0CTtWMCLdeqdX2UKGgGR0BgiCvzOHFhaAdN6ANoCEdAk7WkJ0GNaXV9lChoBkdAZEeu3c580GgHTegDaAhHQJO1qB9Tgl51ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}