File size: 4,351 Bytes
e9ca55b 73588cb e9ca55b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
datasets:
- PrimeIntellect/fineweb-edu
- PrimeIntellect/fineweb
- PrimeIntellect/StackV1-popular
- mlfoundations/dclm-baseline-1.0-parquet
- open-web-math/open-web-math
language:
- en
pipeline_tag: text-generation
---
# INTELLECT-1
## **Model Overview**
**INTELLECT-1** is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.
![Intellect 1 training visual](intellect-1-map.png)
**INTELLECT-1** was trained on up to 14 concurrent nodes distributed across 3 continents, with contributions from 30 independent community contributors providing compute.
The training code utilizes the [prime framework](https://github.com/PrimeIntellect-ai/prime), a scalable distributed training framework designed for fault-tolerant, dynamically scaling, high-perfomance training on unreliable, globally distributed workers.
The key abstraction that allows dynamic scaling is the `ElasticDeviceMesh` which manages dynamic global process groups for fault-tolerant communication across the internet and local process groups for communication within a node.
The model was trained using the [DiLoCo](https://arxiv.org/abs/2311.08105) algorithms with 100 inner steps. The global all-reduce was done with custom int8 all-reduce kernels to reduce the communication payload required, greatly reducing the communication overhead by a factor 400x.
For more detailed technical insights, please refer to our [technical paper](https://github.com/PrimeIntellect-ai/prime).
**Note: The model will immediately output EOS token if the BOS token is not set. This is a result of the tensor packing used during training. This can result in terrible eval scores.**
## Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("PrimeIntellect/INTELLECT-1-Instruct")
tokenizer = AutoTokenizer.from_pretrained("PrimeIntellect/INTELLECT-1-Instruct")
input_text = "What is the Metamorphosis of Prime Intellect about?"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output_text)
```
### Example text generation pipeline
```python
import torch
from transformers import pipeline
torch.set_default_device("cuda")
pipe = pipeline("text-generation", model="PrimeIntellect/INTELLECT-1")
print(pipe("What is prime intellect ?"))
```
## **Model Details**
- **Model Contributors**: samsja, Prime Intellect, Arcee AI, kotaro, skre_0, marlo, rodeo, Herb, Olas, superchillen, Hugging Face, mev_pete, 0xfr_, dj, primeprimeint1234, Marco Giglio, realtek, Hyperbolic, hecataeus, NWO, Virtual Machine, droll, SemiAnalysis, _waiting__, toptickcrypto, sto, Johannes, washout_segment_0b, klee
- **Release Date**: 29 Nov 2024
- **Model License**: Apache 2.0
## **Technical Specifications**
| **Parameter** | **Value** |
|----------------------|------------------------|
| Parameter Size | 10B |
| Number of Layers | 42 |
| Number of Attention Heads | 32 |
| Hidden Size | 4096 |
| Context Length | 8192 |
| Vocabulary Size | 128256 |
**Training Details**:
- **Dataset**: 55% fineweb-edu, 10% fineweb, 20% Stack V1, 10% dclm-baseline, 5% open-web-math
- **Tokens**: 1 Trillion
- **Optimizer**: Diloco/LocalSGD - Inner Optimizer: AdamW, Outer Optmizer: Nesterov SGD
**Performance on benchmarks**
| Model | Size | Tokens | MMLU | GPQA | GSM8K | ARC-C | Hellaswag |
|---|---|---|---|---|---|---|---|
| INTELLECT-1 | 10B | 1T | 37.5 | 26.12 | 8.1 | 52.13 | 72.26 |
| LLaMA-7B | 7B | 1T | 35.1 | 23.1 | 9.7 | 50.43 | 78.19 |
| LLaMA-13B | 13B | 1T | 46.9 | 26.34 | 17.3 | 56.14 | 81.05 |
| LLaMA2-7B | 7B | 2T | 45.3 | 25.89 | 13.5 | 54.10 | 78.64 |
| LLaMA2-13B | 13B | 2T | 54.8 | 25.67 | 24.3 | 59.81 | 82.58 |
| MPT-7B | 7B | 1T | 26.8 | 25.67 | 8.3 | 46.67 | 77.41 |
| Falcon-7B | 7B | 1.5T | 26.2 | 23.66 | 4.9 | 47.61 | 78.23 |
| Pythia-12B | 12B | 300B | 26.5 | 24.33 | 4.09 | 40.61 | 68.83 |
| LLM360-Amber | 7B | 1.3T | 24.5 | 27.01 | 4.3 | 42.75 | 74.08 |
## **Citations**
If you use this model in your research, please cite it as follows:
```
@article{}
``` |