Priyanka-Balivada
commited on
Commit
•
2fc455b
1
Parent(s):
06e0b17
electra-3-epoch-sentiment
Browse files
README.md
CHANGED
@@ -24,13 +24,13 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
-
value: 0.
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
-
value: 0.
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,12 +40,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the tweet_eval dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Accuracy: 0.
|
45 |
-
- Precision: 0.
|
46 |
-
- Recall: 0.
|
47 |
-
- Micro-avg-recall: 0.
|
48 |
-
- Micro-avg-precision: 0.
|
49 |
|
50 |
## Model description
|
51 |
|
@@ -76,9 +76,9 @@ The following hyperparameters were used during training:
|
|
76 |
|
77 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
|
78 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:|
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
|
83 |
|
84 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.694399218495604
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.6974534604256839
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.694399218495604
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the tweet_eval dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.7133
|
44 |
+
- Accuracy: 0.6944
|
45 |
+
- Precision: 0.6975
|
46 |
+
- Recall: 0.6944
|
47 |
+
- Micro-avg-recall: 0.6944
|
48 |
+
- Micro-avg-precision: 0.6944
|
49 |
|
50 |
## Model description
|
51 |
|
|
|
76 |
|
77 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
|
78 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:|
|
79 |
+
| 0.633 | 1.0 | 2851 | 0.6916 | 0.6968 | 0.6972 | 0.6968 | 0.6968 | 0.6968 |
|
80 |
+
| 0.6322 | 2.0 | 5702 | 0.7180 | 0.6915 | 0.6948 | 0.6915 | 0.6915 | 0.6915 |
|
81 |
+
| 0.5729 | 3.0 | 8553 | 0.7133 | 0.6944 | 0.6975 | 0.6944 | 0.6944 | 0.6944 |
|
82 |
|
83 |
|
84 |
### Framework versions
|