--- base_model: bert-base-cased license: apache-2.0 metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: NER results: [] --- # NER This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0571 - Precision: 0.9540 - Recall: 0.9620 - F1: 0.9580 - Accuracy: 0.9812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0698 | 1.0 | 4031 | 0.0589 | 0.9537 | 0.9611 | 0.9574 | 0.9804 | | 0.045 | 2.0 | 8062 | 0.0571 | 0.9540 | 0.9620 | 0.9580 | 0.9812 | | 0.0289 | 3.0 | 12093 | 0.0633 | 0.9612 | 0.9597 | 0.9604 | 0.9819 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1