sharpenb commited on
Commit
e700f56
1 Parent(s): 8043209

Upload folder using huggingface_hub (#1)

Browse files

- d184e0bbf218515df5e97fe115c1f621097f9a1bd9577219c27d955e92b5afa6 (34990107666b31e19be0638db6c6d5ab7a3e3d2b)
- 01738c1d358c5f7b84b6e2d7a15098dac9a120eb253bf5b4ad50e9396922c5fb (e31b3e23b5b4e5bfd4b8ccf36af45d1c57feffef)
- bfd0abecbb313d7979097dc3e04de97cb20f0ddb1b450370bbc6061faa09e671 (881ad406b26d1f866f51df1954924f8dea919bf7)

README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ base_model: internlm/internlm2-math-7b
4
+ metrics:
5
+ - memory_disk
6
+ - memory_inference
7
+ - inference_latency
8
+ - inference_throughput
9
+ - inference_CO2_emissions
10
+ - inference_energy_consumption
11
+ tags:
12
+ - pruna-ai
13
+ ---
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
18
+ <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </a>
20
+ </div>
21
+ <!-- header end -->
22
+
23
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
24
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
25
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
26
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
27
+
28
+ # Simply make AI models cheaper, smaller, faster, and greener!
29
+
30
+ - Give a thumbs up if you like this model!
31
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
32
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
33
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
34
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
35
+
36
+ ## Results
37
+
38
+ ![image info](./plots.png)
39
+
40
+ **Frequently Asked Questions**
41
+ - ***How does the compression work?*** The model is compressed with llm-int8.
42
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
43
+ - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
44
+ - ***What is the model format?*** We use safetensors.
45
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
46
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
47
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
48
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
49
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
50
+
51
+ ## Setup
52
+
53
+ You can run the smashed model with these steps:
54
+
55
+ 0. Check requirements from the original repo internlm/internlm2-math-7b installed. In particular, check python, cuda, and transformers versions.
56
+ 1. Make sure that you have installed quantization related packages.
57
+ ```bash
58
+ pip install transformers accelerate bitsandbytes>0.37.0
59
+ ```
60
+ 2. Load & run the model.
61
+ ```python
62
+ from transformers import AutoModelForCausalLM, AutoTokenizer
63
+
64
+
65
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/internlm-internlm2-math-7b-bnb-8bit-smashed", trust_remote_code=True, device_map='auto')
66
+ tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2-math-7b")
67
+
68
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
69
+
70
+ outputs = model.generate(input_ids, max_new_tokens=216)
71
+ tokenizer.decode(outputs[0])
72
+ ```
73
+
74
+ ## Configurations
75
+
76
+ The configuration info are in `smash_config.json`.
77
+
78
+ ## Credits & License
79
+
80
+ The license of the smashed model follows the license of the original model. Please check the license of the original model internlm/internlm2-math-7b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
81
+
82
+ ## Want to compress other models?
83
+
84
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
85
+ - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
added_tokens.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "[UNUSED_TOKEN_141]": 92544,
3
+ "[UNUSED_TOKEN_142]": 92545,
4
+ "[UNUSED_TOKEN_143]": 92546,
5
+ "[UNUSED_TOKEN_144]": 92547,
6
+ "[UNUSED_TOKEN_145]": 92548,
7
+ "[UNUSED_TOKEN_146]": 92549
8
+ }
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/ceph/hdd/staff/charpent/.cache/modelsz2umqzdmg7_vrlt2",
3
+ "architectures": [
4
+ "InternLM2ForCausalLM"
5
+ ],
6
+ "attn_implementation": "eager",
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
9
+ "AutoModel": "internlm/internlm2-math-7b--modeling_internlm2.InternLM2ForCausalLM",
10
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
11
+ },
12
+ "bias": false,
13
+ "bos_token_id": 1,
14
+ "eos_token_id": 2,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 8192,
20
+ "model_type": "internlm2",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "pad_token_id": 2,
25
+ "pretraining_tp": 1,
26
+ "quantization_config": {
27
+ "_load_in_4bit": false,
28
+ "_load_in_8bit": true,
29
+ "bnb_4bit_compute_dtype": "bfloat16",
30
+ "bnb_4bit_quant_storage": "uint8",
31
+ "bnb_4bit_quant_type": "fp4",
32
+ "bnb_4bit_use_double_quant": false,
33
+ "llm_int8_enable_fp32_cpu_offload": false,
34
+ "llm_int8_has_fp16_weight": false,
35
+ "llm_int8_skip_modules": [
36
+ "lm_head"
37
+ ],
38
+ "llm_int8_threshold": 6.0,
39
+ "load_in_4bit": false,
40
+ "load_in_8bit": true,
41
+ "quant_method": "bitsandbytes"
42
+ },
43
+ "rms_norm_eps": 1e-05,
44
+ "rope_scaling": null,
45
+ "rope_theta": 1000000,
46
+ "tie_word_embeddings": false,
47
+ "torch_dtype": "float16",
48
+ "transformers_version": "4.42.4",
49
+ "use_cache": true,
50
+ "vocab_size": 92544
51
+ }
configuration_internlm2.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM2 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
28
+ class InternLM2Config(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
31
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
32
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`InternLM2Model`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 11008):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer decoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer decoder.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ pad_token_id (`int`, *optional*):
70
+ Padding token id.
71
+ bos_token_id (`int`, *optional*, defaults to 1):
72
+ Beginning of stream token id.
73
+ eos_token_id (`int`, *optional*, defaults to 2):
74
+ End of stream token id.
75
+ pretraining_tp (`int`, *optional*, defaults to 1):
76
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
77
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
78
+ to understand more about it. This value is necessary to ensure exact reproducibility
79
+ of the pretraining results. Please refer to [this
80
+ issue](https://github.com/pytorch/pytorch/issues/76232).
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`Dict`, *optional*):
86
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
87
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
88
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
89
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
90
+ these scaling strategies behave:
91
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
92
+ experimental feature, subject to breaking API changes in future versions.
93
+ """
94
+ _auto_class = "AutoConfig"
95
+ model_type = "internlm2"
96
+ keys_to_ignore_at_inference = ["past_key_values"]
97
+
98
+ def __init__( # pylint: disable=W0102
99
+ self,
100
+ vocab_size=103168,
101
+ hidden_size=4096,
102
+ intermediate_size=11008,
103
+ num_hidden_layers=32,
104
+ num_attention_heads=32,
105
+ num_key_value_heads=None,
106
+ hidden_act="silu",
107
+ max_position_embeddings=2048,
108
+ initializer_range=0.02,
109
+ rms_norm_eps=1e-6,
110
+ use_cache=True,
111
+ pad_token_id=0,
112
+ bos_token_id=1,
113
+ eos_token_id=2,
114
+ pretraining_tp=1,
115
+ tie_word_embeddings=False,
116
+ bias=True,
117
+ rope_theta=10000,
118
+ rope_scaling=None,
119
+ attn_implementation=None,
120
+ **kwargs,
121
+ ):
122
+ self.vocab_size = vocab_size
123
+ self.max_position_embeddings = max_position_embeddings
124
+ self.hidden_size = hidden_size
125
+ self.intermediate_size = intermediate_size
126
+ self.num_hidden_layers = num_hidden_layers
127
+ self.num_attention_heads = num_attention_heads
128
+ self.bias = bias
129
+
130
+ if num_key_value_heads is None:
131
+ num_key_value_heads = num_attention_heads
132
+ self.num_key_value_heads = num_key_value_heads
133
+
134
+ self.hidden_act = hidden_act
135
+ self.initializer_range = initializer_range
136
+ self.rms_norm_eps = rms_norm_eps
137
+ self.pretraining_tp = pretraining_tp
138
+ self.use_cache = use_cache
139
+ self.rope_theta = rope_theta
140
+ self.rope_scaling = rope_scaling
141
+ self._rope_scaling_validation()
142
+ self.attn_implementation = attn_implementation
143
+ if self.attn_implementation is None:
144
+ self.attn_implementation = "eager"
145
+
146
+ super().__init__(
147
+ pad_token_id=pad_token_id,
148
+ bos_token_id=bos_token_id,
149
+ eos_token_id=eos_token_id,
150
+ tie_word_embeddings=tie_word_embeddings,
151
+ **kwargs,
152
+ )
153
+
154
+ def _rope_scaling_validation(self):
155
+ """
156
+ Validate the `rope_scaling` configuration.
157
+ """
158
+ if self.rope_scaling is None:
159
+ return
160
+
161
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
162
+ raise ValueError(
163
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
164
+ f"got {self.rope_scaling}"
165
+ )
166
+ rope_scaling_type = self.rope_scaling.get("type", None)
167
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
168
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
169
+ raise ValueError(
170
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
171
+ )
172
+ if (
173
+ rope_scaling_factor is None
174
+ or not isinstance(rope_scaling_factor, (float, int))
175
+ or rope_scaling_factor < 1.0
176
+ ):
177
+ raise ValueError(
178
+ f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
179
+ f"of type {type(rope_scaling_factor)}"
180
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.42.4"
7
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a92b2e65882ca540db12252beccc1eb41b8a8121ce5a072084df5dbf565fd288
3
+ size 4947681472
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5979081263ad3f564a68d5407fbfc6e7c75124545fc16e50d9297a8fe570b859
3
+ size 3175269952
model.safetensors.index.json ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8122910208
4
+ },
5
+ "weight_map": {
6
+ "model.layers.0.attention.wo.SCB": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.attention.wo.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.attention.wqkv.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.attention_norm.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.ffn_norm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.attention.wo.SCB": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.attention.wo.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.attention.wqkv.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.attention_norm.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.ffn_norm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.attention.wo.SCB": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.attention.wo.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.attention.wqkv.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.attention_norm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.ffn_norm.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.attention.wo.SCB": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.attention.wo.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.attention.wqkv.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.attention_norm.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.ffn_norm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.12.attention.wo.SCB": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.attention.wo.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.attention.wqkv.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.attention_norm.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.ffn_norm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.13.attention.wo.SCB": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.attention.wo.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.attention.wqkv.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.attention_norm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.ffn_norm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.14.attention.wo.SCB": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.attention.wo.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.attention.wqkv.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.attention_norm.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.ffn_norm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.15.attention.wo.SCB": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.attention.wo.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.attention.wqkv.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.attention_norm.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.ffn_norm.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.16.attention.wo.SCB": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.attention.wo.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.attention.wqkv.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.attention_norm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.ffn_norm.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.17.attention.wo.SCB": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.attention.wo.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.attention.wqkv.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.attention_norm.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.ffn_norm.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.18.attention.wo.SCB": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.attention.wo.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.attention.wqkv.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.attention_norm.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.ffn_norm.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.19.attention.wo.SCB": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.attention.wo.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.attention.wqkv.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.attention_norm.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.19.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
144
+ "model.layers.19.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.19.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
146
+ "model.layers.19.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.19.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
148
+ "model.layers.19.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.19.ffn_norm.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.2.attention.wo.SCB": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.attention.wo.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.attention.wqkv.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.attention_norm.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.ffn_norm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.20.attention.wo.SCB": "model-00002-of-00002.safetensors",
163
+ "model.layers.20.attention.wo.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.20.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
165
+ "model.layers.20.attention.wqkv.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.20.attention_norm.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.20.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
168
+ "model.layers.20.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.20.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
170
+ "model.layers.20.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.20.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
172
+ "model.layers.20.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.20.ffn_norm.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.21.attention.wo.SCB": "model-00002-of-00002.safetensors",
175
+ "model.layers.21.attention.wo.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.attention.wqkv.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.attention_norm.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.21.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
182
+ "model.layers.21.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.21.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
184
+ "model.layers.21.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.21.ffn_norm.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.22.attention.wo.SCB": "model-00002-of-00002.safetensors",
187
+ "model.layers.22.attention.wo.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.attention.wqkv.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.attention_norm.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.ffn_norm.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.23.attention.wo.SCB": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.attention.wo.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.attention.wqkv.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.attention_norm.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.ffn_norm.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.24.attention.wo.SCB": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.attention.wo.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.attention.wqkv.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.attention_norm.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.ffn_norm.weight": "model-00002-of-00002.safetensors",
222
+ "model.layers.25.attention.wo.SCB": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.attention.wo.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.attention.wqkv.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.attention_norm.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.ffn_norm.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.26.attention.wo.SCB": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.attention.wo.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.attention.wqkv.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.attention_norm.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.ffn_norm.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.27.attention.wo.SCB": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.attention.wo.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.attention.wqkv.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.attention_norm.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.ffn_norm.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.28.attention.wo.SCB": "model-00002-of-00002.safetensors",
259
+ "model.layers.28.attention.wo.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.attention.wqkv.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.attention_norm.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.ffn_norm.weight": "model-00002-of-00002.safetensors",
270
+ "model.layers.29.attention.wo.SCB": "model-00002-of-00002.safetensors",
271
+ "model.layers.29.attention.wo.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.attention.wqkv.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.attention_norm.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.ffn_norm.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.3.attention.wo.SCB": "model-00001-of-00002.safetensors",
283
+ "model.layers.3.attention.wo.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.attention.wqkv.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.attention_norm.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.ffn_norm.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.30.attention.wo.SCB": "model-00002-of-00002.safetensors",
295
+ "model.layers.30.attention.wo.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.attention.wqkv.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.attention_norm.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.ffn_norm.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.31.attention.wo.SCB": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.attention.wo.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.attention.wqkv.SCB": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.attention.wqkv.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.attention_norm.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.feed_forward.w1.SCB": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.feed_forward.w2.SCB": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.feed_forward.w3.SCB": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.ffn_norm.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.4.attention.wo.SCB": "model-00001-of-00002.safetensors",
319
+ "model.layers.4.attention.wo.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.4.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
321
+ "model.layers.4.attention.wqkv.weight": "model-00001-of-00002.safetensors",
322
+ "model.layers.4.attention_norm.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.4.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
324
+ "model.layers.4.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
325
+ "model.layers.4.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
326
+ "model.layers.4.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.4.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
328
+ "model.layers.4.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.4.ffn_norm.weight": "model-00001-of-00002.safetensors",
330
+ "model.layers.5.attention.wo.SCB": "model-00001-of-00002.safetensors",
331
+ "model.layers.5.attention.wo.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.5.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
333
+ "model.layers.5.attention.wqkv.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.5.attention_norm.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.5.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
336
+ "model.layers.5.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
337
+ "model.layers.5.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
338
+ "model.layers.5.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.5.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
340
+ "model.layers.5.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.5.ffn_norm.weight": "model-00001-of-00002.safetensors",
342
+ "model.layers.6.attention.wo.SCB": "model-00001-of-00002.safetensors",
343
+ "model.layers.6.attention.wo.weight": "model-00001-of-00002.safetensors",
344
+ "model.layers.6.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
345
+ "model.layers.6.attention.wqkv.weight": "model-00001-of-00002.safetensors",
346
+ "model.layers.6.attention_norm.weight": "model-00001-of-00002.safetensors",
347
+ "model.layers.6.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
348
+ "model.layers.6.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
349
+ "model.layers.6.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
350
+ "model.layers.6.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
351
+ "model.layers.6.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
352
+ "model.layers.6.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
353
+ "model.layers.6.ffn_norm.weight": "model-00001-of-00002.safetensors",
354
+ "model.layers.7.attention.wo.SCB": "model-00001-of-00002.safetensors",
355
+ "model.layers.7.attention.wo.weight": "model-00001-of-00002.safetensors",
356
+ "model.layers.7.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
357
+ "model.layers.7.attention.wqkv.weight": "model-00001-of-00002.safetensors",
358
+ "model.layers.7.attention_norm.weight": "model-00001-of-00002.safetensors",
359
+ "model.layers.7.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
360
+ "model.layers.7.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
361
+ "model.layers.7.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
362
+ "model.layers.7.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
363
+ "model.layers.7.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
364
+ "model.layers.7.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
365
+ "model.layers.7.ffn_norm.weight": "model-00001-of-00002.safetensors",
366
+ "model.layers.8.attention.wo.SCB": "model-00001-of-00002.safetensors",
367
+ "model.layers.8.attention.wo.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.8.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
369
+ "model.layers.8.attention.wqkv.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.8.attention_norm.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.8.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
372
+ "model.layers.8.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.8.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
374
+ "model.layers.8.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.8.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
376
+ "model.layers.8.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.8.ffn_norm.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.9.attention.wo.SCB": "model-00001-of-00002.safetensors",
379
+ "model.layers.9.attention.wo.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.9.attention.wqkv.SCB": "model-00001-of-00002.safetensors",
381
+ "model.layers.9.attention.wqkv.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.9.attention_norm.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.9.feed_forward.w1.SCB": "model-00001-of-00002.safetensors",
384
+ "model.layers.9.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.9.feed_forward.w2.SCB": "model-00001-of-00002.safetensors",
386
+ "model.layers.9.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.9.feed_forward.w3.SCB": "model-00001-of-00002.safetensors",
388
+ "model.layers.9.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.9.ffn_norm.weight": "model-00001-of-00002.safetensors",
390
+ "model.norm.weight": "model-00002-of-00002.safetensors",
391
+ "model.tok_embeddings.weight": "model-00001-of-00002.safetensors",
392
+ "output.SCB": "model-00002-of-00002.safetensors",
393
+ "output.weight": "model-00002-of-00002.safetensors"
394
+ }
395
+ }
modeling_internlm2.py ADDED
@@ -0,0 +1,1808 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from einops import rearrange
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
30
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
40
+ from transformers.utils import (
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_greater_or_equal_2_10,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+
48
+ try:
49
+ from transformers.generation.streamers import BaseStreamer
50
+ except Exception:
51
+ BaseStreamer = None
52
+
53
+ from .configuration_internlm2 import InternLM2Config
54
+
55
+
56
+ try:
57
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
58
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
59
+ except:
60
+ pass
61
+
62
+ try:
63
+ support_bf16_triu = torch.__version__ >= "2.1.0"
64
+ except Exception:
65
+ support_bf16_triu = False
66
+
67
+ logger = logging.get_logger(__name__)
68
+
69
+ _CONFIG_FOR_DOC = "InternLM2Config"
70
+
71
+
72
+ def _get_unpad_data(attention_mask):
73
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
74
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
75
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
76
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # pylint: disable=E1102
77
+ return (
78
+ indices,
79
+ cu_seqlens,
80
+ max_seqlen_in_batch,
81
+ )
82
+
83
+
84
+ class InternLM2RMSNorm(nn.Module):
85
+ """InternLM2RMSNorm is equivalent to T5LayerNorm."""
86
+
87
+ def __init__(self, hidden_size, eps=1e-6):
88
+ super().__init__()
89
+ self.weight = nn.Parameter(torch.ones(hidden_size))
90
+ self.variance_epsilon = eps
91
+
92
+ def forward(self, hidden_states):
93
+ input_dtype = hidden_states.dtype
94
+ hidden_states = hidden_states.to(torch.float32)
95
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
96
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
97
+ return self.weight * hidden_states.to(input_dtype)
98
+
99
+
100
+ ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
101
+
102
+
103
+ class InternLM2RotaryEmbedding(nn.Module):
104
+ """Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains."""
105
+
106
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
107
+ super().__init__()
108
+ self.scaling_factor = scaling_factor
109
+ self.dim = dim
110
+ self.max_position_embeddings = max_position_embeddings
111
+ self.base = base
112
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
113
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
114
+ # For BC we register cos and sin cached
115
+ self.max_seq_len_cached = max_position_embeddings
116
+
117
+ @torch.no_grad()
118
+ def forward(self, x, position_ids):
119
+ # x: [bs, num_attention_heads, seq_len, head_size]
120
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
121
+ position_ids_expanded = position_ids[:, None, :].float()
122
+ # Force float32 since bfloat16 loses precision on long contexts
123
+ # See https://github.com/huggingface/transformers/pull/29285
124
+ device_type = x.device.type
125
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
126
+ with torch.autocast(device_type=device_type, enabled=False):
127
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
128
+ emb = torch.cat((freqs, freqs), dim=-1)
129
+ cos = emb.cos()
130
+ sin = emb.sin()
131
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
132
+
133
+
134
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
135
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
136
+
137
+ def forward(self, x, position_ids):
138
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
139
+ position_ids = position_ids.float() / self.scaling_factor
140
+ cos, sin = super().forward(x, position_ids)
141
+ return cos, sin
142
+
143
+
144
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
145
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
146
+ Credits to the Reddit users /u/bloc97 and /u/emozilla"""
147
+
148
+ def forward(self, x, position_ids):
149
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
150
+ seq_len = torch.max(position_ids) + 1
151
+ if seq_len > self.max_position_embeddings:
152
+ base = self.base * (
153
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
154
+ ) ** (self.dim / (self.dim - 2))
155
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim))
156
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
157
+
158
+ cos, sin = super().forward(x, position_ids)
159
+ return cos, sin
160
+
161
+
162
+ def rotate_half(x):
163
+ """Rotates half the hidden dims of the input."""
164
+ x1 = x[..., : x.shape[-1] // 2]
165
+ x2 = x[..., x.shape[-1] // 2 :]
166
+ return torch.cat((-x2, x1), dim=-1)
167
+
168
+
169
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
170
+ """Applies Rotary Position Embedding to the query and key tensors.
171
+
172
+ Args:
173
+ q (`torch.Tensor`): The query tensor.
174
+ k (`torch.Tensor`): The key tensor.
175
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
176
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
177
+ position_ids (`torch.Tensor`, *optional*):
178
+ Deprecated and unused.
179
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
180
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
181
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
182
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
183
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
184
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
185
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
186
+ Returns:
187
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
188
+ """
189
+ cos = cos.unsqueeze(unsqueeze_dim)
190
+ sin = sin.unsqueeze(unsqueeze_dim)
191
+ q_embed = (q * cos) + (rotate_half(q) * sin)
192
+ k_embed = (k * cos) + (rotate_half(k) * sin)
193
+ return q_embed, k_embed
194
+
195
+
196
+ class InternLM2MLP(nn.Module):
197
+ """MLP for InternLM2 model."""
198
+
199
+ def __init__(self, config):
200
+ super().__init__()
201
+ self.config = config
202
+ self.hidden_size = config.hidden_size
203
+ self.intermediate_size = config.intermediate_size
204
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
205
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
206
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
207
+ self.act_fn = ACT2FN[config.hidden_act]
208
+
209
+ def forward(self, x):
210
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
211
+
212
+ return down_proj
213
+
214
+
215
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
216
+ """
217
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
218
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
219
+ """
220
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
221
+ if n_rep == 1:
222
+ return hidden_states
223
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
224
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
225
+
226
+
227
+ class InternLM2Attention(nn.Module):
228
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
229
+
230
+ def __init__(self, config: InternLM2Config, layer_idx: Optional[int] = None):
231
+ super().__init__()
232
+ self.config = config
233
+ self.layer_idx = layer_idx
234
+ if layer_idx is None:
235
+ logger.warning_once(
236
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
237
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
238
+ "when creating this class."
239
+ )
240
+
241
+ self.hidden_size = config.hidden_size
242
+ self.num_heads = config.num_attention_heads
243
+ self.head_dim = self.hidden_size // self.num_heads
244
+ self.num_key_value_heads = config.num_key_value_heads
245
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
246
+ self.max_position_embeddings = config.max_position_embeddings
247
+ self.rope_theta = config.rope_theta
248
+ self.is_causal = True
249
+
250
+ if (self.head_dim * self.num_heads) != self.hidden_size:
251
+ raise ValueError(
252
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
253
+ f" and `num_heads`: {self.num_heads})."
254
+ )
255
+
256
+ self.wqkv = nn.Linear(
257
+ self.hidden_size,
258
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
259
+ bias=config.bias,
260
+ )
261
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
262
+
263
+ self._init_rope()
264
+
265
+ def _init_rope(self):
266
+ if self.config.rope_scaling is None:
267
+ self.rotary_emb = InternLM2RotaryEmbedding(
268
+ self.head_dim,
269
+ max_position_embeddings=self.max_position_embeddings,
270
+ base=self.rope_theta,
271
+ )
272
+ else:
273
+ scaling_type = self.config.rope_scaling["type"]
274
+ scaling_factor = self.config.rope_scaling["factor"]
275
+ if scaling_type == "linear":
276
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
277
+ self.head_dim,
278
+ max_position_embeddings=self.max_position_embeddings,
279
+ scaling_factor=scaling_factor,
280
+ base=self.rope_theta,
281
+ )
282
+ elif scaling_type == "dynamic":
283
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
284
+ self.head_dim,
285
+ max_position_embeddings=self.max_position_embeddings,
286
+ scaling_factor=scaling_factor,
287
+ base=self.rope_theta,
288
+ )
289
+ else:
290
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
291
+
292
+ def forward(
293
+ self,
294
+ hidden_states: torch.Tensor,
295
+ attention_mask: Optional[torch.Tensor] = None,
296
+ position_ids: Optional[torch.LongTensor] = None,
297
+ past_key_value: Optional[Cache] = None,
298
+ output_attentions: bool = False,
299
+ use_cache: bool = False, # pylint: disable=unused-argument
300
+ cache_position: Optional[torch.LongTensor] = None,
301
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
302
+ bsz, q_len, _ = hidden_states.size()
303
+
304
+ if self.config.pretraining_tp > 1:
305
+ # split qkv_states by tp size
306
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
307
+ qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
308
+ qkv_states = torch.cat(
309
+ [F.linear(hidden_states, qkv_slice) for qkv_slice in qkv_slices], dim=-1 # pylint: disable=E1102
310
+ )
311
+ else:
312
+ qkv_states = self.wqkv(hidden_states)
313
+
314
+ qkv_states = rearrange(
315
+ qkv_states,
316
+ "b q (h gs d) -> b q h gs d",
317
+ gs=2 + self.num_key_value_groups,
318
+ d=self.head_dim,
319
+ )
320
+
321
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
322
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d").transpose(1, 2)
323
+ key_states = qkv_states[..., -2, :].transpose(1, 2)
324
+ value_states = qkv_states[..., -1, :].transpose(1, 2)
325
+
326
+ cos, sin = self.rotary_emb(value_states, position_ids)
327
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
328
+
329
+ if past_key_value is not None:
330
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
331
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
332
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
333
+
334
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
335
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
336
+
337
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
338
+
339
+ if attention_mask is not None: # no matter the length, we just slice it
340
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
341
+ attn_weights = attn_weights + causal_mask
342
+
343
+ # upcast attention to fp32
344
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
345
+ attn_output = torch.matmul(attn_weights, value_states)
346
+
347
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
348
+ raise ValueError(
349
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
350
+ f" {attn_output.size()}"
351
+ )
352
+
353
+ attn_output = attn_output.transpose(1, 2).contiguous()
354
+
355
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
356
+
357
+ if self.config.pretraining_tp > 1:
358
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
359
+ o_proj_slices = self.wo.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
360
+ attn_output = sum(
361
+ [
362
+ F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
363
+ for i in range(self.config.pretraining_tp)
364
+ ]
365
+ )
366
+ else:
367
+ attn_output = self.wo(attn_output)
368
+
369
+ if not output_attentions:
370
+ attn_weights = None
371
+
372
+ return attn_output, attn_weights, past_key_value
373
+
374
+
375
+ class InternLM2FlashAttention2(InternLM2Attention):
376
+ """
377
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
378
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
379
+ flash attention and deal with padding tokens in case the input contains any of them.
380
+ """
381
+
382
+ def __init__(self, *args, **kwargs):
383
+ super().__init__(*args, **kwargs)
384
+
385
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
386
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement,
387
+ # that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
388
+ # Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
389
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
390
+ # produces a wrong mask (top-left).
391
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
392
+
393
+ def forward(
394
+ self,
395
+ hidden_states: torch.Tensor,
396
+ attention_mask: Optional[torch.LongTensor] = None,
397
+ position_ids: Optional[torch.LongTensor] = None,
398
+ past_key_value: Optional[Cache] = None,
399
+ output_attentions: bool = False,
400
+ use_cache: bool = False,
401
+ cache_position: Optional[torch.LongTensor] = None,
402
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
403
+ if isinstance(past_key_value, StaticCache):
404
+ raise ValueError(
405
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
406
+ "make sure to use `sdpa` in the mean time, and open an issue at "
407
+ "https://github.com/huggingface/transformers"
408
+ )
409
+
410
+ output_attentions = False
411
+
412
+ bsz, q_len, _ = hidden_states.size()
413
+
414
+ qkv_states = self.wqkv(hidden_states)
415
+
416
+ qkv_states = rearrange(
417
+ qkv_states,
418
+ "b q (h gs d) -> b q h gs d",
419
+ gs=2 + self.num_key_value_groups,
420
+ d=self.head_dim,
421
+ )
422
+
423
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
424
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
425
+ key_states = qkv_states[..., -2, :]
426
+ value_states = qkv_states[..., -1, :]
427
+
428
+ query_states = query_states.transpose(1, 2)
429
+ key_states = key_states.transpose(1, 2)
430
+ value_states = value_states.transpose(1, 2)
431
+
432
+ cos, sin = self.rotary_emb(value_states, position_ids)
433
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
434
+
435
+ if past_key_value is not None:
436
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
437
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
438
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
439
+
440
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout
441
+ # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
442
+ # to be able to avoid many of these transpose/reshape/view.
443
+ query_states = query_states.transpose(1, 2)
444
+ key_states = key_states.transpose(1, 2)
445
+ value_states = value_states.transpose(1, 2)
446
+
447
+ # dropout_rate = self.attention_dropout if self.training else 0.0
448
+ dropout_rate = 0.0
449
+
450
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
451
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
452
+ # cast them back in the correct dtype just to be sure everything works as expected.
453
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
454
+ # in fp32. (InternLM2RMSNorm handles it correctly)
455
+
456
+ input_dtype = query_states.dtype
457
+ if input_dtype == torch.float32:
458
+ if torch.is_autocast_enabled():
459
+ target_dtype = torch.get_autocast_gpu_dtype()
460
+ # Handle the case where the model is quantized
461
+ elif hasattr(self.config, "_pre_quantization_dtype"):
462
+ target_dtype = self.config._pre_quantization_dtype
463
+ else:
464
+ target_dtype = self.wqkv.weight.dtype
465
+
466
+ logger.warning_once(
467
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
468
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
469
+ f" {target_dtype}."
470
+ )
471
+
472
+ query_states = query_states.to(target_dtype)
473
+ key_states = key_states.to(target_dtype)
474
+ value_states = value_states.to(target_dtype)
475
+
476
+ attn_output = self._flash_attention_forward(
477
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
478
+ )
479
+
480
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
481
+ attn_output = self.wo(attn_output)
482
+
483
+ if not output_attentions:
484
+ attn_weights = None
485
+
486
+ return attn_output, attn_weights, past_key_value # pylint: disable=E0606
487
+
488
+ def _flash_attention_forward(
489
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
490
+ ):
491
+ """
492
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
493
+ first unpad the input, then computes the attention scores and pad the final attention scores.
494
+
495
+ Args:
496
+ query_states (`torch.Tensor`):
497
+ Input query states to be passed to Flash Attention API
498
+ key_states (`torch.Tensor`):
499
+ Input key states to be passed to Flash Attention API
500
+ value_states (`torch.Tensor`):
501
+ Input value states to be passed to Flash Attention API
502
+ attention_mask (`torch.Tensor`):
503
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
504
+ position of padding tokens and 1 for the position of non-padding tokens.
505
+ dropout (`float`):
506
+ Attention dropout
507
+ softmax_scale (`float`, *optional*):
508
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
509
+ """
510
+ if not self._flash_attn_uses_top_left_mask:
511
+ causal = self.is_causal
512
+ else:
513
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
514
+ # For details, please see the comment in InternLM2FlashAttention2 __init__.
515
+ causal = self.is_causal and query_length != 1
516
+
517
+ # Contains at least one padding token in the sequence
518
+ if attention_mask is not None:
519
+ batch_size = query_states.shape[0]
520
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
521
+ query_states, key_states, value_states, attention_mask, query_length
522
+ )
523
+
524
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
525
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
526
+
527
+ attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
528
+ query_states,
529
+ key_states,
530
+ value_states,
531
+ cu_seqlens_q=cu_seqlens_q,
532
+ cu_seqlens_k=cu_seqlens_k,
533
+ max_seqlen_q=max_seqlen_in_batch_q,
534
+ max_seqlen_k=max_seqlen_in_batch_k,
535
+ dropout_p=dropout,
536
+ softmax_scale=softmax_scale,
537
+ causal=causal,
538
+ )
539
+
540
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) # pylint: disable=E0606
541
+ else:
542
+ attn_output = flash_attn_func( # pylint: disable=E0606
543
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
544
+ )
545
+
546
+ return attn_output
547
+
548
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
549
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
550
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
551
+
552
+ key_layer = index_first_axis( # pylint: disable=E0606
553
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
554
+ )
555
+ value_layer = index_first_axis( # pylint: disable=E0606
556
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
557
+ )
558
+ if query_length == kv_seq_len:
559
+ query_layer = index_first_axis( # pylint: disable=E0606
560
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
561
+ )
562
+ cu_seqlens_q = cu_seqlens_k
563
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
564
+ indices_q = indices_k
565
+ elif query_length == 1:
566
+ max_seqlen_in_batch_q = 1
567
+ cu_seqlens_q = torch.arange(
568
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
569
+ ) # There is a memcpy here, that is very bad.
570
+ indices_q = cu_seqlens_q[:-1]
571
+ query_layer = query_layer.squeeze(1)
572
+ else:
573
+ # The -q_len: slice assumes left padding.
574
+ attention_mask = attention_mask[:, -query_length:]
575
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
576
+ query_layer, attention_mask
577
+ )
578
+
579
+ return (
580
+ query_layer,
581
+ key_layer,
582
+ value_layer,
583
+ indices_q,
584
+ (cu_seqlens_q, cu_seqlens_k),
585
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
586
+ )
587
+
588
+
589
+ # Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
590
+ class InternLM2SdpaAttention(InternLM2Attention):
591
+ """
592
+ InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
593
+ `InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
594
+ to adapt to SDPA API.
595
+ """
596
+
597
+ # Adapted from InternLM2Attention.forward
598
+ def forward(
599
+ self,
600
+ hidden_states: torch.Tensor,
601
+ attention_mask: Optional[torch.Tensor] = None,
602
+ position_ids: Optional[torch.LongTensor] = None,
603
+ past_key_value: Optional[Cache] = None,
604
+ output_attentions: bool = False,
605
+ use_cache: bool = False,
606
+ cache_position: Optional[torch.LongTensor] = None,
607
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
608
+ if output_attentions:
609
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
610
+ # once this is implemented.
611
+ logger.warning_once(
612
+ "InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` "
613
+ "does not support `output_attentions=True`. Falling back to the manual attention implementation, "
614
+ "but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
615
+ 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
616
+ )
617
+ return super().forward(
618
+ hidden_states=hidden_states,
619
+ attention_mask=attention_mask,
620
+ position_ids=position_ids,
621
+ past_key_value=past_key_value,
622
+ output_attentions=output_attentions,
623
+ use_cache=use_cache,
624
+ cache_position=cache_position,
625
+ )
626
+
627
+ bsz, q_len, _ = hidden_states.size()
628
+
629
+ qkv_states = self.wqkv(hidden_states)
630
+
631
+ qkv_states = rearrange(
632
+ qkv_states,
633
+ "b q (h gs d) -> b q h gs d",
634
+ gs=2 + self.num_key_value_groups,
635
+ d=self.head_dim,
636
+ )
637
+
638
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
639
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
640
+ key_states = qkv_states[..., -2, :]
641
+ value_states = qkv_states[..., -1, :]
642
+
643
+ query_states = query_states.transpose(1, 2)
644
+ key_states = key_states.transpose(1, 2)
645
+ value_states = value_states.transpose(1, 2)
646
+
647
+ cos, sin = self.rotary_emb(value_states, position_ids)
648
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
649
+
650
+ if past_key_value is not None:
651
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
652
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
653
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
654
+
655
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
656
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
657
+
658
+ causal_mask = attention_mask
659
+ if attention_mask is not None:
660
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
661
+
662
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
663
+ # custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
664
+ if query_states.device.type == "cuda" and causal_mask is not None:
665
+ query_states = query_states.contiguous()
666
+ key_states = key_states.contiguous()
667
+ value_states = value_states.contiguous()
668
+
669
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
670
+ # an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
671
+ # options. An inline conditional prevents dynamic shapes from compiling.
672
+ is_causal = bool(causal_mask is None and q_len > 1)
673
+
674
+ attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
675
+ query_states,
676
+ key_states,
677
+ value_states,
678
+ attn_mask=causal_mask,
679
+ dropout_p=0.0,
680
+ is_causal=is_causal,
681
+ )
682
+
683
+ attn_output = attn_output.transpose(1, 2).contiguous()
684
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
685
+
686
+ attn_output = self.wo(attn_output)
687
+
688
+ return attn_output, None, past_key_value
689
+
690
+
691
+ INTERNLM2_ATTENTION_CLASSES = {
692
+ "eager": InternLM2Attention,
693
+ "flash_attention_2": InternLM2FlashAttention2,
694
+ "sdpa": InternLM2SdpaAttention,
695
+ }
696
+
697
+
698
+ # Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
699
+ class InternLM2DecoderLayer(nn.Module):
700
+ """InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model."""
701
+
702
+ def __init__(self, config: InternLM2Config, layer_idx: int):
703
+ super().__init__()
704
+ self.hidden_size = config.hidden_size
705
+ self.layer_idx = layer_idx
706
+
707
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config, layer_idx=layer_idx)
708
+
709
+ self.feed_forward = InternLM2MLP(config)
710
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
711
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
712
+
713
+ def forward(
714
+ self,
715
+ hidden_states: torch.Tensor,
716
+ attention_mask: Optional[torch.Tensor] = None,
717
+ position_ids: Optional[torch.LongTensor] = None,
718
+ past_key_value: Optional[Cache] = None,
719
+ output_attentions: Optional[bool] = False,
720
+ use_cache: Optional[bool] = False,
721
+ cache_position: Optional[torch.LongTensor] = None,
722
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
723
+ """
724
+ Args:
725
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
726
+ attention_mask (`torch.FloatTensor`, *optional*):
727
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
728
+ query_sequence_length, key_sequence_length)` if default attention is used.
729
+ output_attentions (`bool`, *optional*):
730
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
731
+ returned tensors for more detail.
732
+ use_cache (`bool`, *optional*):
733
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
734
+ (see `past_key_values`).
735
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
736
+ """
737
+ residual = hidden_states
738
+
739
+ hidden_states = self.attention_norm(hidden_states)
740
+
741
+ # Self Attention
742
+ hidden_states, self_attn_weights, present_key_value = self.attention(
743
+ hidden_states=hidden_states,
744
+ attention_mask=attention_mask,
745
+ position_ids=position_ids,
746
+ past_key_value=past_key_value,
747
+ output_attentions=output_attentions,
748
+ use_cache=use_cache,
749
+ cache_position=cache_position,
750
+ )
751
+ hidden_states = residual + hidden_states
752
+
753
+ # Fully Connected
754
+ residual = hidden_states
755
+ hidden_states = self.ffn_norm(hidden_states)
756
+ hidden_states = self.feed_forward(hidden_states)
757
+ hidden_states = residual + hidden_states
758
+
759
+ outputs = (hidden_states,)
760
+
761
+ if output_attentions:
762
+ outputs += (self_attn_weights,)
763
+
764
+ if use_cache:
765
+ outputs += (present_key_value,)
766
+
767
+ return outputs
768
+
769
+
770
+ InternLM2_START_DOCSTRING = r"""
771
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
772
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
773
+ etc.)
774
+
775
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
776
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
777
+ and behavior.
778
+
779
+ Parameters:
780
+ config ([`InternLM2Config`]):
781
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
782
+ load the weights associated with the model, only the configuration. Check out the
783
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
784
+ """
785
+
786
+
787
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
788
+ @add_start_docstrings(
789
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
790
+ InternLM2_START_DOCSTRING,
791
+ )
792
+ class InternLM2PreTrainedModel(PreTrainedModel):
793
+ """
794
+ InternLM2 pretraiend model's base class.
795
+ """
796
+
797
+ config_class = InternLM2Config
798
+ base_model_prefix = "model"
799
+ supports_gradient_checkpointing = True
800
+ _no_split_modules = ["InternLM2DecoderLayer"]
801
+ _skip_keys_device_placement = ["past_key_values"]
802
+ _supports_flash_attn_2 = True
803
+ _supports_sdpa = True
804
+ _supports_cache_class = True
805
+ _supports_quantized_cache = True
806
+ _supports_static_cache = True
807
+
808
+ def _init_weights(self, module):
809
+ std = self.config.initializer_range
810
+ if isinstance(module, nn.Linear):
811
+ module.weight.data.normal_(mean=0.0, std=std)
812
+ if module.bias is not None:
813
+ module.bias.data.zero_()
814
+ elif isinstance(module, nn.Embedding):
815
+ module.weight.data.normal_(mean=0.0, std=std)
816
+ if module.padding_idx is not None:
817
+ module.weight.data[module.padding_idx].zero_()
818
+
819
+
820
+ InternLM2_INPUTS_DOCSTRING = r"""
821
+ Args:
822
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
823
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
824
+ it.
825
+
826
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
827
+ [`PreTrainedTokenizer.__call__`] for details.
828
+
829
+ [What are input IDs?](../glossary#input-ids)
830
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
831
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
832
+
833
+ - 1 for tokens that are **not masked**,
834
+ - 0 for tokens that are **masked**.
835
+
836
+ [What are attention masks?](../glossary#attention-mask)
837
+
838
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
839
+ [`PreTrainedTokenizer.__call__`] for details.
840
+
841
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
842
+ `past_key_values`).
843
+
844
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
845
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
846
+ information on the default strategy.
847
+
848
+ - 1 indicates the head is **not masked**,
849
+ - 0 indicates the head is **masked**.
850
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
851
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
852
+ config.n_positions - 1]`.
853
+
854
+ [What are position IDs?](../glossary#position-ids)
855
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
856
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
857
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
858
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
859
+
860
+ Two formats are allowed:
861
+ - a [`~cache_utils.Cache`] instance;
862
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
863
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
864
+ cache format.
865
+
866
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
867
+ legacy cache format will be returned.
868
+
869
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
870
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
871
+ of shape `(batch_size, sequence_length)`.
872
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
873
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
874
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
875
+ model's internal embedding lookup matrix.
876
+ use_cache (`bool`, *optional*):
877
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
878
+ `past_key_values`).
879
+ output_attentions (`bool`, *optional*):
880
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
881
+ tensors for more detail.
882
+ output_hidden_states (`bool`, *optional*):
883
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
884
+ more detail.
885
+ return_dict (`bool`, *optional*):
886
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
887
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
888
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
889
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
890
+ the complete sequence length.
891
+ """
892
+
893
+
894
+ # Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
895
+ @add_start_docstrings(
896
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
897
+ InternLM2_START_DOCSTRING,
898
+ )
899
+ class InternLM2Model(InternLM2PreTrainedModel):
900
+ """
901
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
902
+
903
+ Args:
904
+ config: InternLM2Config
905
+ """
906
+
907
+ _auto_class = "AutoModel"
908
+
909
+ def __init__(self, config: InternLM2Config):
910
+ super().__init__(config)
911
+ self.padding_idx = config.pad_token_id
912
+ self.vocab_size = config.vocab_size
913
+ self.config = config
914
+
915
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
916
+
917
+ self.layers = nn.ModuleList(
918
+ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
919
+ )
920
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
921
+
922
+ self.gradient_checkpointing = False
923
+ # Initialize weights and apply final processing
924
+ self.post_init()
925
+
926
+ def get_input_embeddings(self):
927
+ return self.tok_embeddings
928
+
929
+ def set_input_embeddings(self, value):
930
+ self.tok_embeddings = value
931
+
932
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
933
+ def forward(
934
+ self,
935
+ input_ids: torch.LongTensor = None,
936
+ attention_mask: Optional[torch.Tensor] = None,
937
+ position_ids: Optional[torch.LongTensor] = None,
938
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
939
+ inputs_embeds: Optional[torch.FloatTensor] = None,
940
+ use_cache: Optional[bool] = None,
941
+ output_attentions: Optional[bool] = None,
942
+ output_hidden_states: Optional[bool] = None,
943
+ return_dict: Optional[bool] = None,
944
+ cache_position: Optional[torch.LongTensor] = None,
945
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
946
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
947
+ output_hidden_states = (
948
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
949
+ )
950
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
951
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
952
+
953
+ if (input_ids is None) ^ (inputs_embeds is not None):
954
+ raise ValueError(
955
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
956
+ )
957
+
958
+ if self.gradient_checkpointing and self.training and use_cache:
959
+ logger.warning_once(
960
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
961
+ )
962
+ use_cache = False
963
+
964
+ if inputs_embeds is None:
965
+ inputs_embeds = self.tok_embeddings(input_ids)
966
+
967
+ return_legacy_cache = False
968
+ if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
969
+ return_legacy_cache = True
970
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
971
+
972
+ if cache_position is None:
973
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
974
+ cache_position = torch.arange(
975
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
976
+ )
977
+ if position_ids is None:
978
+ position_ids = cache_position.unsqueeze(0)
979
+
980
+ causal_mask = self._update_causal_mask(
981
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
982
+ )
983
+
984
+ # embed positions
985
+ hidden_states = inputs_embeds
986
+
987
+ # decoder layers
988
+ all_hidden_states = () if output_hidden_states else None
989
+ all_self_attns = () if output_attentions else None
990
+ next_decoder_cache = None
991
+
992
+ for decoder_layer in self.layers:
993
+ if output_hidden_states:
994
+ all_hidden_states += (hidden_states,)
995
+
996
+ if self.gradient_checkpointing and self.training:
997
+ layer_outputs = self._gradient_checkpointing_func(
998
+ decoder_layer.__call__,
999
+ hidden_states,
1000
+ causal_mask,
1001
+ position_ids,
1002
+ past_key_values,
1003
+ output_attentions,
1004
+ use_cache,
1005
+ cache_position,
1006
+ )
1007
+ else:
1008
+ layer_outputs = decoder_layer(
1009
+ hidden_states,
1010
+ attention_mask=causal_mask,
1011
+ position_ids=position_ids,
1012
+ past_key_value=past_key_values,
1013
+ output_attentions=output_attentions,
1014
+ use_cache=use_cache,
1015
+ cache_position=cache_position,
1016
+ )
1017
+
1018
+ hidden_states = layer_outputs[0]
1019
+
1020
+ if use_cache:
1021
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1022
+
1023
+ if output_attentions:
1024
+ all_self_attns += (layer_outputs[1],)
1025
+
1026
+ hidden_states = self.norm(hidden_states)
1027
+
1028
+ # add hidden states from the last decoder layer
1029
+ if output_hidden_states:
1030
+ all_hidden_states += (hidden_states,)
1031
+
1032
+ next_cache = next_decoder_cache if use_cache else None
1033
+ if return_legacy_cache:
1034
+ next_cache = next_cache.to_legacy_cache()
1035
+
1036
+ if not return_dict:
1037
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1038
+ return BaseModelOutputWithPast(
1039
+ last_hidden_state=hidden_states,
1040
+ past_key_values=next_cache,
1041
+ hidden_states=all_hidden_states,
1042
+ attentions=all_self_attns,
1043
+ )
1044
+
1045
+ def _update_causal_mask(
1046
+ self,
1047
+ attention_mask: torch.Tensor,
1048
+ input_tensor: torch.Tensor,
1049
+ cache_position: torch.Tensor,
1050
+ past_key_values: Cache,
1051
+ output_attentions: bool,
1052
+ ):
1053
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
1054
+ # even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
1055
+ # each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
1056
+ # VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
1057
+ # See more context in https://github.com/huggingface/transformers/pull/29114
1058
+
1059
+ if self.config.attn_implementation == "flash_attention_2":
1060
+ if attention_mask is not None and 0.0 in attention_mask:
1061
+ return attention_mask
1062
+ return None
1063
+
1064
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1065
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1066
+ # to infer the attention mask.
1067
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1068
+ using_static_cache = isinstance(past_key_values, StaticCache)
1069
+
1070
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1071
+ if self.config.attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1072
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1073
+ attention_mask,
1074
+ inputs_embeds=input_tensor,
1075
+ past_key_values_length=past_seen_tokens,
1076
+ is_training=self.training,
1077
+ ):
1078
+ return None
1079
+
1080
+ dtype, device = input_tensor.dtype, input_tensor.device
1081
+ min_dtype = torch.finfo(dtype).min
1082
+ sequence_length = input_tensor.shape[1]
1083
+ if using_static_cache:
1084
+ target_length = past_key_values.get_max_length()
1085
+ else:
1086
+ target_length = (
1087
+ attention_mask.shape[-1]
1088
+ if isinstance(attention_mask, torch.Tensor)
1089
+ else past_seen_tokens + sequence_length + 1
1090
+ )
1091
+
1092
+ if attention_mask is not None and attention_mask.dim() == 4:
1093
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1094
+ if attention_mask.max() != 0:
1095
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1096
+ causal_mask = attention_mask
1097
+ else:
1098
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1099
+ if sequence_length != 1:
1100
+ if support_bf16_triu or dtype == torch.float32:
1101
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1102
+ else:
1103
+ triu_mask = torch.triu(torch.ones(causal_mask.size(), device=device), diagonal=1).bool()
1104
+ causal_mask.masked_fill_(~triu_mask, 0)
1105
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1106
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1107
+ if attention_mask is not None:
1108
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1109
+ mask_length = attention_mask.shape[-1]
1110
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1111
+ padding_mask = padding_mask == 0
1112
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1113
+ padding_mask, min_dtype
1114
+ )
1115
+ if (
1116
+ self.config.attn_implementation == "sdpa"
1117
+ and attention_mask is not None
1118
+ and attention_mask.device.type == "cuda"
1119
+ and not output_attentions
1120
+ ):
1121
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1122
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1123
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1124
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) # pylint: disable=E1120
1125
+
1126
+ return causal_mask
1127
+
1128
+
1129
+ # Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
1130
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1131
+ """Causal language model (CLM) for InternLM2."""
1132
+
1133
+ _auto_class = "AutoModelForCausalLM"
1134
+ _tied_weights_keys = ["output.weight"]
1135
+
1136
+ def __init__(self, config):
1137
+ super().__init__(config)
1138
+ self.model = InternLM2Model(config)
1139
+ self.vocab_size = config.vocab_size
1140
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1141
+
1142
+ # Initialize weights and apply final processing
1143
+ self.post_init()
1144
+
1145
+ def get_input_embeddings(self):
1146
+ return self.model.tok_embeddings
1147
+
1148
+ def set_input_embeddings(self, value):
1149
+ self.model.tok_embeddings = value
1150
+
1151
+ def get_output_embeddings(self):
1152
+ return self.output
1153
+
1154
+ def set_output_embeddings(self, new_embeddings):
1155
+ self.output = new_embeddings
1156
+
1157
+ def set_decoder(self, decoder):
1158
+ self.model = decoder
1159
+
1160
+ def get_decoder(self):
1161
+ return self.model
1162
+
1163
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1164
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1165
+ def forward(
1166
+ self,
1167
+ input_ids: torch.LongTensor = None,
1168
+ attention_mask: Optional[torch.Tensor] = None,
1169
+ position_ids: Optional[torch.LongTensor] = None,
1170
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1171
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1172
+ labels: Optional[torch.LongTensor] = None,
1173
+ use_cache: Optional[bool] = None,
1174
+ output_attentions: Optional[bool] = None,
1175
+ output_hidden_states: Optional[bool] = None,
1176
+ return_dict: Optional[bool] = None,
1177
+ cache_position: Optional[torch.LongTensor] = None,
1178
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1179
+ r"""
1180
+ Args:
1181
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1182
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1183
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1184
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1185
+
1186
+ Returns:
1187
+
1188
+ Example:
1189
+
1190
+ ```python
1191
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1192
+
1193
+ >>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1194
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1195
+
1196
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1197
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1198
+
1199
+ >>> # Generate
1200
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1201
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1202
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1203
+ ```"""
1204
+
1205
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1206
+ output_hidden_states = (
1207
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1208
+ )
1209
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1210
+
1211
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1212
+ outputs = self.model(
1213
+ input_ids=input_ids,
1214
+ attention_mask=attention_mask,
1215
+ position_ids=position_ids,
1216
+ past_key_values=past_key_values,
1217
+ inputs_embeds=inputs_embeds,
1218
+ use_cache=use_cache,
1219
+ output_attentions=output_attentions,
1220
+ output_hidden_states=output_hidden_states,
1221
+ return_dict=return_dict,
1222
+ cache_position=cache_position,
1223
+ )
1224
+
1225
+ hidden_states = outputs[0]
1226
+ if self.config.pretraining_tp > 1:
1227
+ output_slices = self.output.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1228
+ logits = [
1229
+ F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
1230
+ for i in range(self.config.pretraining_tp)
1231
+ ]
1232
+ logits = torch.cat(logits, dim=-1)
1233
+ else:
1234
+ logits = self.output(hidden_states)
1235
+ logits = logits.float()
1236
+
1237
+ loss = None
1238
+ if labels is not None:
1239
+ # Shift so that tokens < n predict n
1240
+ shift_logits = logits[..., :-1, :].contiguous()
1241
+ shift_labels = labels[..., 1:].contiguous()
1242
+ # Flatten the tokens
1243
+ loss_fct = CrossEntropyLoss()
1244
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1245
+ shift_labels = shift_labels.view(-1)
1246
+ # Enable model parallelism
1247
+ shift_labels = shift_labels.to(shift_logits.device)
1248
+ loss = loss_fct(shift_logits, shift_labels)
1249
+
1250
+ if not return_dict:
1251
+ output = (logits,) + outputs[1:]
1252
+ return (loss,) + output if loss is not None else output
1253
+
1254
+ return CausalLMOutputWithPast(
1255
+ loss=loss,
1256
+ logits=logits,
1257
+ past_key_values=outputs.past_key_values,
1258
+ hidden_states=outputs.hidden_states,
1259
+ attentions=outputs.attentions,
1260
+ )
1261
+
1262
+ def prepare_inputs_for_generation(
1263
+ self,
1264
+ input_ids,
1265
+ past_key_values=None,
1266
+ attention_mask=None,
1267
+ inputs_embeds=None,
1268
+ cache_position=None,
1269
+ use_cache=True,
1270
+ **kwargs,
1271
+ ):
1272
+ past_length = 0
1273
+ if past_key_values is not None:
1274
+ if isinstance(past_key_values, Cache):
1275
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1276
+ max_cache_length = (
1277
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1278
+ if past_key_values.get_max_length() is not None
1279
+ else None
1280
+ )
1281
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1282
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1283
+ else:
1284
+ cache_length = past_length = past_key_values[0][0].shape[2]
1285
+ max_cache_length = None
1286
+
1287
+ # Keep only the unprocessed tokens:
1288
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1289
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
1290
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1291
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1292
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1293
+ # input_ids based on the past_length.
1294
+ elif past_length < input_ids.shape[1]:
1295
+ input_ids = input_ids[:, past_length:]
1296
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1297
+
1298
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1299
+ if (
1300
+ max_cache_length is not None
1301
+ and attention_mask is not None
1302
+ and cache_length + input_ids.shape[1] > max_cache_length
1303
+ ):
1304
+ attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
1305
+
1306
+ position_ids = kwargs.get("position_ids", None)
1307
+ if attention_mask is not None and position_ids is None:
1308
+ # create position_ids on the fly for batch generation
1309
+ position_ids = attention_mask.long().cumsum(-1) - 1
1310
+ position_ids.masked_fill_(attention_mask == 0, 1)
1311
+ if past_key_values:
1312
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1313
+
1314
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1315
+ if inputs_embeds is not None and past_key_values is None:
1316
+ model_inputs = {"inputs_embeds": inputs_embeds}
1317
+ else:
1318
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1319
+ # recompiles graphs as the stride of the inputs is a guard.
1320
+ # Ref: https://github.com/huggingface/transformers/pull/29114
1321
+ # TODO: use `next_tokens` directly instead.
1322
+ model_inputs = {"input_ids": input_ids.contiguous()}
1323
+
1324
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1325
+ if cache_position is None:
1326
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1327
+ elif use_cache:
1328
+ cache_position = cache_position[-input_length:]
1329
+
1330
+ model_inputs.update(
1331
+ {
1332
+ "position_ids": position_ids,
1333
+ "cache_position": cache_position,
1334
+ "past_key_values": past_key_values,
1335
+ "use_cache": use_cache,
1336
+ "attention_mask": attention_mask,
1337
+ }
1338
+ )
1339
+ return model_inputs
1340
+
1341
+ @staticmethod
1342
+ def _reorder_cache(past_key_values, beam_idx):
1343
+ reordered_past = ()
1344
+ for layer_past in past_key_values:
1345
+ reordered_past += (
1346
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1347
+ )
1348
+ return reordered_past
1349
+
1350
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, meta_instruction=""):
1351
+ if history is None:
1352
+ history = []
1353
+ if tokenizer.add_bos_token:
1354
+ prompt = ""
1355
+ else:
1356
+ prompt = tokenizer.bos_token
1357
+ if meta_instruction:
1358
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1359
+ for record in history:
1360
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1361
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1362
+ return tokenizer([prompt], return_tensors="pt")
1363
+
1364
+ @torch.no_grad()
1365
+ def chat(
1366
+ self,
1367
+ tokenizer,
1368
+ query: str,
1369
+ history: Optional[List[Tuple[str, str]]] = None,
1370
+ streamer: Optional[BaseStreamer] = None,
1371
+ max_new_tokens: int = 1024,
1372
+ do_sample: bool = True,
1373
+ temperature: float = 0.8,
1374
+ top_p: float = 0.8,
1375
+ meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
1376
+ "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
1377
+ "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
1378
+ "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such "
1379
+ "as English and 中文.",
1380
+ **kwargs,
1381
+ ):
1382
+ if history is None:
1383
+ history = []
1384
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1385
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1386
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1387
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
1388
+ outputs = self.generate(
1389
+ **inputs,
1390
+ streamer=streamer,
1391
+ max_new_tokens=max_new_tokens,
1392
+ do_sample=do_sample,
1393
+ temperature=temperature,
1394
+ top_p=top_p,
1395
+ eos_token_id=eos_token_id,
1396
+ **kwargs,
1397
+ )
1398
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
1399
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1400
+ response = response.split("<|im_end|>")[0]
1401
+ history = history + [(query, response)]
1402
+ return response, history
1403
+
1404
+ @torch.no_grad()
1405
+ def stream_chat(
1406
+ self,
1407
+ tokenizer,
1408
+ query: str,
1409
+ history: List[Tuple[str, str]] = None,
1410
+ max_new_tokens: int = 1024,
1411
+ do_sample: bool = True,
1412
+ temperature: float = 0.8,
1413
+ top_p: float = 0.8,
1414
+ **kwargs,
1415
+ ):
1416
+ if history is None:
1417
+ history = []
1418
+ """
1419
+ Return a generator in format: (response, history)
1420
+ Eg.
1421
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1422
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1423
+ """
1424
+ if BaseStreamer is None:
1425
+ raise ModuleNotFoundError(
1426
+ "The version of `transformers` is too low. Please make sure "
1427
+ "that you have installed `transformers>=4.28.0`."
1428
+ )
1429
+
1430
+ response_queue = queue.Queue(maxsize=20)
1431
+
1432
+ class ChatStreamer(BaseStreamer):
1433
+ """
1434
+ Streamer used in generate to print words one by one.
1435
+ """
1436
+
1437
+ def __init__(self, tokenizer) -> None:
1438
+ super().__init__()
1439
+ self.tokenizer = tokenizer
1440
+ self.queue = response_queue
1441
+ self.query = query
1442
+ self.history = history
1443
+ self.response = ""
1444
+ self.cache = []
1445
+ self.received_inputs = False
1446
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1447
+
1448
+ def put(self, value):
1449
+ if len(value.shape) > 1 and value.shape[0] > 1:
1450
+ raise ValueError("ChatStreamer only supports batch size 1")
1451
+ elif len(value.shape) > 1:
1452
+ value = value[0]
1453
+
1454
+ if not self.received_inputs:
1455
+ # The first received value is input_ids, ignore here
1456
+ self.received_inputs = True
1457
+ return
1458
+
1459
+ self.cache.extend(value.tolist())
1460
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1461
+ if token.strip() != "<|im_end|>":
1462
+ self.response = self.response + token
1463
+ history = self.history + [(self.query, self.response)]
1464
+ self.queue.put((self.response, history))
1465
+ self.cache = []
1466
+ else:
1467
+ self.end()
1468
+
1469
+ def end(self):
1470
+ self.queue.put(None)
1471
+
1472
+ def stream_producer():
1473
+ return self.chat(
1474
+ tokenizer=tokenizer,
1475
+ query=query,
1476
+ streamer=ChatStreamer(tokenizer=tokenizer),
1477
+ history=history,
1478
+ max_new_tokens=max_new_tokens,
1479
+ do_sample=do_sample,
1480
+ temperature=temperature,
1481
+ top_p=top_p,
1482
+ **kwargs,
1483
+ )
1484
+
1485
+ def consumer():
1486
+ producer = threading.Thread(target=stream_producer)
1487
+ producer.start()
1488
+ while True:
1489
+ res = response_queue.get()
1490
+ if res is None:
1491
+ return
1492
+ yield res
1493
+
1494
+ return consumer()
1495
+
1496
+
1497
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1498
+ @add_start_docstrings(
1499
+ """
1500
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1501
+
1502
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1503
+ (e.g. GPT-2) do.
1504
+
1505
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1506
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1507
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1508
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1509
+ each row of the batch).
1510
+ """,
1511
+ InternLM2_START_DOCSTRING,
1512
+ )
1513
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1514
+ """Sequence Classification Head for InternLM2 Model."""
1515
+
1516
+ def __init__(self, config):
1517
+ super().__init__(config)
1518
+ self.num_labels = config.num_labels
1519
+ self.model = InternLM2Model(config)
1520
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1521
+
1522
+ # Initialize weights and apply final processing
1523
+ self.post_init()
1524
+
1525
+ def get_input_embeddings(self):
1526
+ return self.model.tok_embeddings
1527
+
1528
+ def set_input_embeddings(self, value):
1529
+ self.model.tok_embeddings = value
1530
+
1531
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1532
+ def forward(
1533
+ self,
1534
+ input_ids: torch.LongTensor = None,
1535
+ attention_mask: Optional[torch.Tensor] = None,
1536
+ position_ids: Optional[torch.LongTensor] = None,
1537
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1538
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1539
+ labels: Optional[torch.LongTensor] = None,
1540
+ use_cache: Optional[bool] = None,
1541
+ output_attentions: Optional[bool] = None,
1542
+ output_hidden_states: Optional[bool] = None,
1543
+ return_dict: Optional[bool] = None,
1544
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1545
+ r"""
1546
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1547
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1548
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1549
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1550
+ """
1551
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1552
+
1553
+ transformer_outputs = self.model(
1554
+ input_ids,
1555
+ attention_mask=attention_mask,
1556
+ position_ids=position_ids,
1557
+ past_key_values=past_key_values,
1558
+ inputs_embeds=inputs_embeds,
1559
+ use_cache=use_cache,
1560
+ output_attentions=output_attentions,
1561
+ output_hidden_states=output_hidden_states,
1562
+ return_dict=return_dict,
1563
+ )
1564
+ hidden_states = transformer_outputs[0]
1565
+ logits = self.score(hidden_states)
1566
+
1567
+ if input_ids is not None:
1568
+ batch_size = input_ids.shape[0]
1569
+ else:
1570
+ batch_size = inputs_embeds.shape[0]
1571
+
1572
+ if self.config.pad_token_id is None and batch_size != 1:
1573
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1574
+ if self.config.pad_token_id is None:
1575
+ sequence_lengths = -1
1576
+ else:
1577
+ if input_ids is not None:
1578
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1579
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1580
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1581
+ sequence_lengths = sequence_lengths.to(logits.device)
1582
+ else:
1583
+ sequence_lengths = -1
1584
+
1585
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1586
+
1587
+ loss = None
1588
+ if labels is not None:
1589
+ labels = labels.to(logits.device)
1590
+ if self.config.problem_type is None:
1591
+ if self.num_labels == 1:
1592
+ self.config.problem_type = "regression"
1593
+ elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
1594
+ self.config.problem_type = "single_label_classification"
1595
+ else:
1596
+ self.config.problem_type = "multi_label_classification"
1597
+
1598
+ if self.config.problem_type == "regression":
1599
+ loss_fct = MSELoss()
1600
+ if self.num_labels == 1:
1601
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1602
+ else:
1603
+ loss = loss_fct(pooled_logits, labels)
1604
+ elif self.config.problem_type == "single_label_classification":
1605
+ loss_fct = CrossEntropyLoss()
1606
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1607
+ elif self.config.problem_type == "multi_label_classification":
1608
+ loss_fct = BCEWithLogitsLoss()
1609
+ loss = loss_fct(pooled_logits, labels)
1610
+ if not return_dict:
1611
+ output = (pooled_logits,) + transformer_outputs[1:]
1612
+ return ((loss,) + output) if loss is not None else output
1613
+
1614
+ return SequenceClassifierOutputWithPast(
1615
+ loss=loss,
1616
+ logits=pooled_logits,
1617
+ past_key_values=transformer_outputs.past_key_values,
1618
+ hidden_states=transformer_outputs.hidden_states,
1619
+ attentions=transformer_outputs.attentions,
1620
+ )
1621
+
1622
+
1623
+ # Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
1624
+ @add_start_docstrings(
1625
+ """
1626
+ The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
1627
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1628
+ """,
1629
+ InternLM2_START_DOCSTRING,
1630
+ )
1631
+ class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
1632
+ """Question Answering model for InternLM2."""
1633
+
1634
+ base_model_prefix = "transformer"
1635
+
1636
+ def __init__(self, config):
1637
+ super().__init__(config)
1638
+ self.transformer = InternLM2Model(config)
1639
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1640
+
1641
+ # Initialize weights and apply final processing
1642
+ self.post_init()
1643
+
1644
+ def get_input_embeddings(self):
1645
+ return self.transformer.tok_embeddings
1646
+
1647
+ def set_input_embeddings(self, value):
1648
+ self.transformer.tok_embeddings = value
1649
+
1650
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1651
+ def forward(
1652
+ self,
1653
+ input_ids: Optional[torch.LongTensor] = None,
1654
+ attention_mask: Optional[torch.FloatTensor] = None,
1655
+ position_ids: Optional[torch.LongTensor] = None,
1656
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1657
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1658
+ start_positions: Optional[torch.LongTensor] = None,
1659
+ end_positions: Optional[torch.LongTensor] = None,
1660
+ output_attentions: Optional[bool] = None,
1661
+ output_hidden_states: Optional[bool] = None,
1662
+ return_dict: Optional[bool] = None,
1663
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1664
+ r"""
1665
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1666
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1667
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1668
+ are not taken into account for computing the loss.
1669
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1670
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1671
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1672
+ are not taken into account for computing the loss.
1673
+ """
1674
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1675
+
1676
+ outputs = self.transformer(
1677
+ input_ids,
1678
+ attention_mask=attention_mask,
1679
+ position_ids=position_ids,
1680
+ past_key_values=past_key_values,
1681
+ inputs_embeds=inputs_embeds,
1682
+ output_attentions=output_attentions,
1683
+ output_hidden_states=output_hidden_states,
1684
+ return_dict=return_dict,
1685
+ )
1686
+
1687
+ sequence_output = outputs[0]
1688
+
1689
+ logits = self.qa_outputs(sequence_output)
1690
+ start_logits, end_logits = logits.split(1, dim=-1)
1691
+ start_logits = start_logits.squeeze(-1).contiguous()
1692
+ end_logits = end_logits.squeeze(-1).contiguous()
1693
+
1694
+ total_loss = None
1695
+ if start_positions is not None and end_positions is not None:
1696
+ # If we are on multi-GPU, split add a dimension
1697
+ if len(start_positions.size()) > 1:
1698
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1699
+ if len(end_positions.size()) > 1:
1700
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1701
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1702
+ ignored_index = start_logits.size(1)
1703
+ start_positions = start_positions.clamp(0, ignored_index)
1704
+ end_positions = end_positions.clamp(0, ignored_index)
1705
+
1706
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1707
+ start_loss = loss_fct(start_logits, start_positions)
1708
+ end_loss = loss_fct(end_logits, end_positions)
1709
+ total_loss = (start_loss + end_loss) / 2
1710
+
1711
+ if not return_dict:
1712
+ output = (start_logits, end_logits) + outputs[2:]
1713
+ return ((total_loss,) + output) if total_loss is not None else output
1714
+
1715
+ return QuestionAnsweringModelOutput(
1716
+ loss=total_loss,
1717
+ start_logits=start_logits,
1718
+ end_logits=end_logits,
1719
+ hidden_states=outputs.hidden_states,
1720
+ attentions=outputs.attentions,
1721
+ )
1722
+
1723
+
1724
+ # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
1725
+ @add_start_docstrings(
1726
+ """
1727
+ The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1728
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1729
+ """,
1730
+ InternLM2_START_DOCSTRING,
1731
+ )
1732
+ class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
1733
+ """Token classification model for InternLM2."""
1734
+
1735
+ def __init__(self, config):
1736
+ super().__init__(config)
1737
+ self.num_labels = config.num_labels
1738
+ self.model = InternLM2Model(config)
1739
+ if getattr(config, "classifier_dropout", None) is not None:
1740
+ classifier_dropout = config.classifier_dropout
1741
+ elif getattr(config, "hidden_dropout", None) is not None:
1742
+ classifier_dropout = config.hidden_dropout
1743
+ else:
1744
+ classifier_dropout = 0.1
1745
+ self.dropout = nn.Dropout(classifier_dropout)
1746
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1747
+
1748
+ # Initialize weights and apply final processing
1749
+ self.post_init()
1750
+
1751
+ def get_input_embeddings(self):
1752
+ return self.model.tok_embeddings
1753
+
1754
+ def set_input_embeddings(self, value):
1755
+ self.model.tok_embeddings = value
1756
+
1757
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1758
+ def forward(
1759
+ self,
1760
+ input_ids: torch.LongTensor = None,
1761
+ attention_mask: Optional[torch.Tensor] = None,
1762
+ position_ids: Optional[torch.LongTensor] = None,
1763
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1764
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1765
+ labels: Optional[torch.LongTensor] = None,
1766
+ use_cache: Optional[bool] = None,
1767
+ output_attentions: Optional[bool] = None,
1768
+ output_hidden_states: Optional[bool] = None,
1769
+ return_dict: Optional[bool] = None,
1770
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1771
+ r"""
1772
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1773
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1774
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1775
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1776
+ """
1777
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1778
+
1779
+ outputs = self.model(
1780
+ input_ids,
1781
+ attention_mask=attention_mask,
1782
+ position_ids=position_ids,
1783
+ past_key_values=past_key_values,
1784
+ inputs_embeds=inputs_embeds,
1785
+ use_cache=use_cache,
1786
+ output_attentions=output_attentions,
1787
+ output_hidden_states=output_hidden_states,
1788
+ return_dict=return_dict,
1789
+ )
1790
+ sequence_output = outputs[0]
1791
+ sequence_output = self.dropout(sequence_output)
1792
+ logits = self.score(sequence_output)
1793
+
1794
+ loss = None
1795
+ if labels is not None:
1796
+ loss_fct = CrossEntropyLoss()
1797
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1798
+
1799
+ if not return_dict:
1800
+ output = (logits,) + outputs[2:]
1801
+ return ((loss,) + output) if loss is not None else output
1802
+
1803
+ return TokenClassifierOutput(
1804
+ loss=loss,
1805
+ logits=logits,
1806
+ hidden_states=outputs.hidden_states,
1807
+ attentions=outputs.attentions,
1808
+ )
smash_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "api_key": null,
3
+ "verify_url": "http://johnrachwan.pythonanywhere.com",
4
+ "smash_config": {
5
+ "pruners": "None",
6
+ "pruning_ratio": 0.0,
7
+ "factorizers": "None",
8
+ "quantizers": "['llm-int8']",
9
+ "weight_quantization_bits": 8,
10
+ "output_deviation": 0.005,
11
+ "compilers": "None",
12
+ "static_batch": true,
13
+ "static_shape": true,
14
+ "controlnet": "None",
15
+ "unet_dim": 4,
16
+ "device": "cuda",
17
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsz2umqzdm",
18
+ "batch_size": 1,
19
+ "model_name": "internlm/internlm2-math-7b",
20
+ "task": "text_text_generation",
21
+ "max_batch_size": 1,
22
+ "qtype_weight": "torch.qint8",
23
+ "qtype_activation": "torch.quint8",
24
+ "qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
25
+ "qscheme": "torch.per_tensor_symmetric",
26
+ "qconfig": "x86",
27
+ "group_size": 128,
28
+ "damp_percent": 0.1,
29
+ "save_load_fn": "bitsandbytes"
30
+ }
31
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>"
9
+ ],
10
+ "bos_token": {
11
+ "content": "<s>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "eos_token": {
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "</s>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "unk_token": {
32
+ "content": "<unk>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization classes for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, List, Optional, Tuple
22
+
23
+ import sentencepiece as spm
24
+ from transformers.tokenization_utils import PreTrainedTokenizer
25
+ from transformers.utils import logging
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
30
+
31
+ PRETRAINED_VOCAB_FILES_MAP = {}
32
+
33
+
34
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
35
+ class InternLM2Tokenizer(PreTrainedTokenizer):
36
+ """
37
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
38
+
39
+ Args:
40
+ vocab_file (`str`):
41
+ Path to the vocabulary file.
42
+ """
43
+
44
+ vocab_files_names = VOCAB_FILES_NAMES
45
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
46
+ model_input_names = ["input_ids", "attention_mask"]
47
+ _auto_class = "AutoTokenizer"
48
+
49
+ def __init__(
50
+ self,
51
+ vocab_file,
52
+ unk_token="<unk>",
53
+ bos_token="<s>",
54
+ eos_token="</s>",
55
+ pad_token="</s>",
56
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
57
+ add_bos_token=True,
58
+ add_eos_token=False,
59
+ decode_with_prefix_space=False,
60
+ clean_up_tokenization_spaces=False,
61
+ **kwargs,
62
+ ):
63
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
64
+ self.vocab_file = vocab_file
65
+ self.add_bos_token = add_bos_token
66
+ self.add_eos_token = add_eos_token
67
+ self.decode_with_prefix_space = decode_with_prefix_space
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+ self._no_prefix_space_tokens = None
71
+ super().__init__(
72
+ bos_token=bos_token,
73
+ eos_token=eos_token,
74
+ unk_token=unk_token,
75
+ pad_token=pad_token,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ **kwargs,
78
+ )
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
85
+ return self._no_prefix_space_tokens
86
+
87
+ @property
88
+ def vocab_size(self):
89
+ """Returns vocab size"""
90
+ return self.sp_model.get_piece_size()
91
+
92
+ @property
93
+ def bos_token_id(self) -> Optional[int]:
94
+ return self.sp_model.bos_id()
95
+
96
+ @property
97
+ def eos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.eos_id()
99
+
100
+ def get_vocab(self):
101
+ """Returns vocab as a dict"""
102
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
+ vocab.update(self.added_tokens_encoder)
104
+ return vocab
105
+
106
+ def _tokenize(self, text):
107
+ """Returns a tokenized string."""
108
+ return self.sp_model.encode(text, out_type=str)
109
+
110
+ def _convert_token_to_id(self, token):
111
+ """Converts a token (str) in an id using the vocab."""
112
+ return self.sp_model.piece_to_id(token)
113
+
114
+ def _convert_id_to_token(self, index):
115
+ """Converts an index (integer) in a token (str) using the vocab."""
116
+ token = self.sp_model.IdToPiece(index)
117
+ return token
118
+
119
+ def _maybe_add_prefix_space(self, tokens, decoded):
120
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
121
+ return " " + decoded
122
+ else:
123
+ return decoded
124
+
125
+ def convert_tokens_to_string(self, tokens):
126
+ """Converts a sequence of tokens (string) in a single string."""
127
+ current_sub_tokens = []
128
+ out_string = ""
129
+ prev_is_special = False
130
+ for token in tokens:
131
+ # make sure that special tokens are not decoded using sentencepiece model
132
+ if token in self.all_special_tokens:
133
+ if not prev_is_special:
134
+ out_string += " "
135
+ out_string += self.sp_model.decode(current_sub_tokens) + token
136
+ prev_is_special = True
137
+ current_sub_tokens = []
138
+ else:
139
+ current_sub_tokens.append(token)
140
+ prev_is_special = False
141
+ out_string += self.sp_model.decode(current_sub_tokens)
142
+ out_string = self.clean_up_tokenization(out_string)
143
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
144
+ return out_string[1:]
145
+
146
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
147
+ """
148
+ Save the vocabulary and special tokens file to a directory.
149
+
150
+ Args:
151
+ save_directory (`str`):
152
+ The directory in which to save the vocabulary.
153
+
154
+ Returns:
155
+ `Tuple(str)`: Paths to the files saved.
156
+ """
157
+ if not os.path.isdir(save_directory):
158
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
159
+ return
160
+ out_vocab_file = os.path.join(
161
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
162
+ )
163
+
164
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
165
+ copyfile(self.vocab_file, out_vocab_file)
166
+ elif not os.path.isfile(self.vocab_file):
167
+ with open(out_vocab_file, "wb") as fi:
168
+ content_spiece_model = self.sp_model.serialized_model_proto()
169
+ fi.write(content_spiece_model)
170
+
171
+ return (out_vocab_file,)
172
+
173
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
174
+ if self.add_bos_token:
175
+ bos_token_ids = [self.bos_token_id]
176
+ else:
177
+ bos_token_ids = []
178
+
179
+ output = bos_token_ids + token_ids_0
180
+
181
+ if token_ids_1 is not None:
182
+ output = output + token_ids_1
183
+
184
+ if self.add_eos_token:
185
+ output = output + [self.eos_token_id]
186
+
187
+ return output
188
+
189
+ def get_special_tokens_mask(
190
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
191
+ ) -> List[int]:
192
+ """
193
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
194
+ special tokens using the tokenizer `prepare_for_model` method.
195
+
196
+ Args:
197
+ token_ids_0 (`List[int]`):
198
+ List of IDs.
199
+ token_ids_1 (`List[int]`, *optional*):
200
+ Optional second list of IDs for sequence pairs.
201
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
202
+ Whether or not the token list is already formatted with special tokens for the model.
203
+
204
+ Returns:
205
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
206
+ """
207
+ if already_has_special_tokens:
208
+ return super().get_special_tokens_mask(
209
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
210
+ )
211
+
212
+ if token_ids_1 is None:
213
+ return [1] + ([0] * len(token_ids_0)) + [1]
214
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
215
+
216
+ def create_token_type_ids_from_sequences(
217
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
218
+ ) -> List[int]:
219
+ """
220
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
221
+ use of token type ids, therefore a list of zeros is returned.
222
+
223
+ Args:
224
+ token_ids_0 (`List[int]`):
225
+ List of IDs.
226
+ token_ids_1 (`List[int]`, *optional*):
227
+ Optional second list of IDs for sequence pairs.
228
+
229
+ Returns:
230
+ `List[int]`: List of zeros.
231
+ """
232
+ eos = [self.eos_token_id]
233
+
234
+ if token_ids_1 is None:
235
+ return len(token_ids_0 + eos) * [0]
236
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenization_internlm2_fast.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization Fast class for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, Optional, Tuple
22
+
23
+ from tokenizers import processors, decoders, Tokenizer, normalizers
24
+ from tokenizers.models import BPE
25
+
26
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
27
+ from transformers.utils import logging
28
+
29
+ from transformers.convert_slow_tokenizer import (
30
+ SLOW_TO_FAST_CONVERTERS,
31
+ SpmConverter,
32
+ SentencePieceExtractor,
33
+ )
34
+
35
+ from .tokenization_internlm2 import InternLM2Tokenizer
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
40
+
41
+ # Modified from transformers.convert_slow_tokenizer.LlamaConverter
42
+ class InternLM2Converter(SpmConverter):
43
+ handle_byte_fallback = True
44
+
45
+ def vocab(self, proto):
46
+ vocab = [
47
+ ("<unk>", 0.0),
48
+ ("<s>", 0.0),
49
+ ("</s>", 0.0),
50
+ ]
51
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
52
+ return vocab
53
+
54
+ def unk_id(self, proto):
55
+ unk_id = 0
56
+ return unk_id
57
+
58
+ def decoder(self, replacement, add_prefix_space):
59
+ decoders_sequence = [
60
+ decoders.Replace("▁", " "),
61
+ decoders.ByteFallback(),
62
+ decoders.Fuse(),
63
+ ]
64
+ if self.proto.normalizer_spec.add_dummy_prefix:
65
+ decoders_sequence.append(decoders.Strip(content=" ", left=1))
66
+ return decoders.Sequence(decoders_sequence)
67
+
68
+ def tokenizer(self, proto):
69
+ model_type = proto.trainer_spec.model_type
70
+ vocab_scores = self.vocab(proto)
71
+ # special tokens
72
+ added_tokens = self.original_tokenizer.added_tokens_decoder
73
+ for i in range(len(vocab_scores)):
74
+ piece, score = vocab_scores[i]
75
+ if i in added_tokens:
76
+ vocab_scores[i] = (added_tokens[i].content, score)
77
+ if model_type == 1:
78
+ raise RuntimeError("InternLM2 is supposed to be a BPE model!")
79
+
80
+ elif model_type == 2:
81
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
82
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
83
+ tokenizer = Tokenizer(
84
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
85
+ )
86
+ tokenizer.add_special_tokens(
87
+ [ added_token for index, added_token in added_tokens.items()]
88
+ )
89
+ else:
90
+ raise Exception(
91
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
92
+ )
93
+
94
+ return tokenizer
95
+
96
+ def normalizer(self, proto):
97
+ normalizers_list = []
98
+ if proto.normalizer_spec.add_dummy_prefix:
99
+ normalizers_list.append(normalizers.Prepend(prepend="▁"))
100
+ normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
101
+ return normalizers.Sequence(normalizers_list)
102
+
103
+ def pre_tokenizer(self, replacement, add_prefix_space):
104
+ return None
105
+
106
+ SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
107
+
108
+
109
+ # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
110
+ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
111
+ vocab_files_names = VOCAB_FILES_NAMES
112
+ slow_tokenizer_class = InternLM2Tokenizer
113
+ padding_side = "left"
114
+ model_input_names = ["input_ids", "attention_mask"]
115
+ _auto_class = "AutoTokenizer"
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_file,
120
+ unk_token="<unk>",
121
+ bos_token="<s>",
122
+ eos_token="</s>",
123
+ pad_token="</s>",
124
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
125
+ add_bos_token=True,
126
+ add_eos_token=False,
127
+ decode_with_prefix_space=False,
128
+ clean_up_tokenization_spaces=False,
129
+ **kwargs,
130
+ ):
131
+ super().__init__(
132
+ vocab_file=vocab_file,
133
+ unk_token=unk_token,
134
+ bos_token=bos_token,
135
+ eos_token=eos_token,
136
+ pad_token=pad_token,
137
+ sp_model_kwargs=sp_model_kwargs,
138
+ add_bos_token=add_bos_token,
139
+ add_eos_token=add_eos_token,
140
+ decode_with_prefix_space=decode_with_prefix_space,
141
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
142
+ **kwargs,
143
+ )
144
+ self._add_bos_token = add_bos_token
145
+ self._add_eos_token = add_eos_token
146
+ self.update_post_processor()
147
+ self.vocab_file = vocab_file
148
+
149
+ @property
150
+ def can_save_slow_tokenizer(self) -> bool:
151
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
152
+
153
+ def update_post_processor(self):
154
+ """
155
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
156
+ """
157
+ bos = self.bos_token
158
+ bos_token_id = self.bos_token_id
159
+ if bos is None and self.add_bos_token:
160
+ raise ValueError("add_bos_token = True but bos_token = None")
161
+
162
+ eos = self.eos_token
163
+ eos_token_id = self.eos_token_id
164
+ if eos is None and self.add_eos_token:
165
+ raise ValueError("add_eos_token = True but eos_token = None")
166
+
167
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
168
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
169
+
170
+ special_tokens = []
171
+ if self.add_bos_token:
172
+ special_tokens.append((bos, bos_token_id))
173
+ if self.add_eos_token:
174
+ special_tokens.append((eos, eos_token_id))
175
+ self._tokenizer.post_processor = processors.TemplateProcessing(
176
+ single=single, pair=pair, special_tokens=special_tokens
177
+ )
178
+
179
+ @property
180
+ def add_eos_token(self):
181
+ return self._add_eos_token
182
+
183
+ @property
184
+ def add_bos_token(self):
185
+ return self._add_bos_token
186
+
187
+ @add_eos_token.setter
188
+ def add_eos_token(self, value):
189
+ self._add_eos_token = value
190
+ self.update_post_processor()
191
+
192
+ @add_bos_token.setter
193
+ def add_bos_token(self, value):
194
+ self._add_bos_token = value
195
+ self.update_post_processor()
196
+
197
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
198
+ if not self.can_save_slow_tokenizer:
199
+ raise ValueError(
200
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
201
+ "tokenizer."
202
+ )
203
+
204
+ if not os.path.isdir(save_directory):
205
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
206
+ return
207
+ out_vocab_file = os.path.join(
208
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
209
+ )
210
+
211
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
212
+ copyfile(self.vocab_file, out_vocab_file)
213
+
214
+ return (out_vocab_file,)
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,1639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "92352": {
30
+ "content": "E",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": false
36
+ },
37
+ "92353": {
38
+ "content": "F",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "92354": {
46
+ "content": "G",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "92355": {
54
+ "content": "H",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "92356": {
62
+ "content": "I",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "92357": {
70
+ "content": "J",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "92358": {
78
+ "content": "K",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "92359": {
86
+ "content": "L",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "92360": {
94
+ "content": "M",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "92361": {
102
+ "content": "N",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "92362": {
110
+ "content": "R",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "92363": {
118
+ "content": "U",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "92364": {
126
+ "content": "V",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "92365": {
134
+ "content": "W",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "92366": {
142
+ "content": "X",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "92367": {
150
+ "content": "Y",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "92368": {
158
+ "content": "Z",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "92369": {
166
+ "content": "a",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "92370": {
174
+ "content": "b",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "92371": {
182
+ "content": "c",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "92372": {
190
+ "content": "d",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "92373": {
198
+ "content": "e",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "92374": {
206
+ "content": "f",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "92375": {
214
+ "content": "g",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "92376": {
222
+ "content": "h",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "92377": {
230
+ "content": "i",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "92378": {
238
+ "content": "j",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "92379": {
246
+ "content": "k",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "92380": {
254
+ "content": "l",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "92381": {
262
+ "content": "m",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "92382": {
270
+ "content": "n",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "92383": {
278
+ "content": "o",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "92384": {
286
+ "content": "p",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "92385": {
294
+ "content": "q",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "92386": {
302
+ "content": "r",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "92387": {
310
+ "content": "s",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "92388": {
318
+ "content": "t",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "92389": {
326
+ "content": "u",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "92390": {
334
+ "content": "v",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "92391": {
342
+ "content": "w",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "92392": {
350
+ "content": "x",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "92393": {
358
+ "content": "y",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "92394": {
366
+ "content": "z",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "92395": {
374
+ "content": "——",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "92396": {
382
+ "content": "……",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "92397": {
390
+ "content": "[UNUSED_TOKEN_0]",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "92398": {
398
+ "content": "[UNUSED_TOKEN_1]",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "92399": {
406
+ "content": "[UNUSED_TOKEN_2]",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "92400": {
414
+ "content": "[UNUSED_TOKEN_3]",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "92401": {
422
+ "content": "[UNUSED_TOKEN_4]",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "92402": {
430
+ "content": "[UNUSED_TOKEN_5]",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "92403": {
438
+ "content": "[UNUSED_TOKEN_6]",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "92404": {
446
+ "content": "[UNUSED_TOKEN_7]",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "92405": {
454
+ "content": "[UNUSED_TOKEN_8]",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "92406": {
462
+ "content": "[UNUSED_TOKEN_9]",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "92407": {
470
+ "content": "[UNUSED_TOKEN_10]",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "92408": {
478
+ "content": "[UNUSED_TOKEN_11]",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "92409": {
486
+ "content": "[UNUSED_TOKEN_12]",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "92410": {
494
+ "content": "[UNUSED_TOKEN_13]",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "92411": {
502
+ "content": "[UNUSED_TOKEN_14]",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "92412": {
510
+ "content": "[UNUSED_TOKEN_15]",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "92413": {
518
+ "content": "[UNUSED_TOKEN_16]",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "92414": {
526
+ "content": "[UNUSED_TOKEN_17]",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "92415": {
534
+ "content": "[UNUSED_TOKEN_18]",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "92416": {
542
+ "content": "[UNUSED_TOKEN_19]",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "92417": {
550
+ "content": "[UNUSED_TOKEN_20]",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "92418": {
558
+ "content": "[UNUSED_TOKEN_21]",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "92419": {
566
+ "content": "[UNUSED_TOKEN_22]",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "92420": {
574
+ "content": "[UNUSED_TOKEN_23]",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "92421": {
582
+ "content": "[UNUSED_TOKEN_24]",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "92422": {
590
+ "content": "[UNUSED_TOKEN_25]",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "92423": {
598
+ "content": "[UNUSED_TOKEN_26]",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "92424": {
606
+ "content": "[UNUSED_TOKEN_27]",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "92425": {
614
+ "content": "[UNUSED_TOKEN_28]",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "92426": {
622
+ "content": "[UNUSED_TOKEN_29]",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "92427": {
630
+ "content": "[UNUSED_TOKEN_30]",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "92428": {
638
+ "content": "[UNUSED_TOKEN_31]",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "92429": {
646
+ "content": "[UNUSED_TOKEN_32]",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "92430": {
654
+ "content": "[UNUSED_TOKEN_33]",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "92431": {
662
+ "content": "[UNUSED_TOKEN_34]",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "92432": {
670
+ "content": "[UNUSED_TOKEN_35]",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "92433": {
678
+ "content": "[UNUSED_TOKEN_36]",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "92434": {
686
+ "content": "[UNUSED_TOKEN_37]",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "92435": {
694
+ "content": "[UNUSED_TOKEN_38]",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "92436": {
702
+ "content": "[UNUSED_TOKEN_39]",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "92437": {
710
+ "content": "[UNUSED_TOKEN_40]",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "92438": {
718
+ "content": "[UNUSED_TOKEN_41]",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "92439": {
726
+ "content": "[UNUSED_TOKEN_42]",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "92440": {
734
+ "content": "[UNUSED_TOKEN_43]",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92441": {
742
+ "content": "[UNUSED_TOKEN_44]",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "92442": {
750
+ "content": "[UNUSED_TOKEN_45]",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "92443": {
758
+ "content": "[UNUSED_TOKEN_46]",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "92444": {
766
+ "content": "[UNUSED_TOKEN_47]",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "92445": {
774
+ "content": "[UNUSED_TOKEN_48]",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "92446": {
782
+ "content": "[UNUSED_TOKEN_49]",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "92447": {
790
+ "content": "[UNUSED_TOKEN_50]",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "92448": {
798
+ "content": "[UNUSED_TOKEN_51]",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "92449": {
806
+ "content": "[UNUSED_TOKEN_52]",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "92450": {
814
+ "content": "[UNUSED_TOKEN_53]",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "92451": {
822
+ "content": "[UNUSED_TOKEN_54]",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "92452": {
830
+ "content": "[UNUSED_TOKEN_55]",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "92453": {
838
+ "content": "[UNUSED_TOKEN_56]",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "92454": {
846
+ "content": "[UNUSED_TOKEN_57]",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "92455": {
854
+ "content": "[UNUSED_TOKEN_58]",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": false
860
+ },
861
+ "92456": {
862
+ "content": "[UNUSED_TOKEN_59]",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": false
868
+ },
869
+ "92457": {
870
+ "content": "[UNUSED_TOKEN_60]",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "92458": {
878
+ "content": "[UNUSED_TOKEN_61]",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "92459": {
886
+ "content": "[UNUSED_TOKEN_62]",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "92460": {
894
+ "content": "[UNUSED_TOKEN_63]",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "92461": {
902
+ "content": "[UNUSED_TOKEN_64]",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "92462": {
910
+ "content": "[UNUSED_TOKEN_65]",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "92463": {
918
+ "content": "[UNUSED_TOKEN_66]",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "92464": {
926
+ "content": "[UNUSED_TOKEN_67]",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "92465": {
934
+ "content": "[UNUSED_TOKEN_68]",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "92466": {
942
+ "content": "[UNUSED_TOKEN_69]",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "92467": {
950
+ "content": "[UNUSED_TOKEN_70]",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "92468": {
958
+ "content": "[UNUSED_TOKEN_71]",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "92469": {
966
+ "content": "[UNUSED_TOKEN_72]",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "92470": {
974
+ "content": "[UNUSED_TOKEN_73]",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "92471": {
982
+ "content": "[UNUSED_TOKEN_74]",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "92472": {
990
+ "content": "[UNUSED_TOKEN_75]",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "92473": {
998
+ "content": "[UNUSED_TOKEN_76]",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "92474": {
1006
+ "content": "[UNUSED_TOKEN_77]",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "92475": {
1014
+ "content": "[UNUSED_TOKEN_78]",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "92476": {
1022
+ "content": "[UNUSED_TOKEN_79]",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "92477": {
1030
+ "content": "[UNUSED_TOKEN_80]",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "92478": {
1038
+ "content": "[UNUSED_TOKEN_81]",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "92479": {
1046
+ "content": "[UNUSED_TOKEN_82]",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "92480": {
1054
+ "content": "[UNUSED_TOKEN_83]",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "92481": {
1062
+ "content": "[UNUSED_TOKEN_84]",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "92482": {
1070
+ "content": "[UNUSED_TOKEN_85]",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "92483": {
1078
+ "content": "[UNUSED_TOKEN_86]",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "92484": {
1086
+ "content": "[UNUSED_TOKEN_87]",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "92485": {
1094
+ "content": "[UNUSED_TOKEN_88]",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "92486": {
1102
+ "content": "[UNUSED_TOKEN_89]",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "92487": {
1110
+ "content": "[UNUSED_TOKEN_90]",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "92488": {
1118
+ "content": "[UNUSED_TOKEN_91]",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "92489": {
1126
+ "content": "[UNUSED_TOKEN_92]",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "92490": {
1134
+ "content": "[UNUSED_TOKEN_93]",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "92491": {
1142
+ "content": "[UNUSED_TOKEN_94]",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "92492": {
1150
+ "content": "[UNUSED_TOKEN_95]",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "92493": {
1158
+ "content": "[UNUSED_TOKEN_96]",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "92494": {
1166
+ "content": "[UNUSED_TOKEN_97]",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "92495": {
1174
+ "content": "[UNUSED_TOKEN_98]",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "92496": {
1182
+ "content": "[UNUSED_TOKEN_99]",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "92497": {
1190
+ "content": "[UNUSED_TOKEN_100]",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "92498": {
1198
+ "content": "[UNUSED_TOKEN_101]",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "92499": {
1206
+ "content": "[UNUSED_TOKEN_102]",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "92500": {
1214
+ "content": "[UNUSED_TOKEN_103]",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "92501": {
1222
+ "content": "[UNUSED_TOKEN_104]",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "92502": {
1230
+ "content": "[UNUSED_TOKEN_105]",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "92503": {
1238
+ "content": "[UNUSED_TOKEN_106]",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "92504": {
1246
+ "content": "[UNUSED_TOKEN_107]",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "92505": {
1254
+ "content": "[UNUSED_TOKEN_108]",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "92506": {
1262
+ "content": "[UNUSED_TOKEN_109]",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "92507": {
1270
+ "content": "[UNUSED_TOKEN_110]",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "92508": {
1278
+ "content": "[UNUSED_TOKEN_111]",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "92509": {
1286
+ "content": "[UNUSED_TOKEN_112]",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "92510": {
1294
+ "content": "[UNUSED_TOKEN_113]",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "92511": {
1302
+ "content": "[UNUSED_TOKEN_114]",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "92512": {
1310
+ "content": "[UNUSED_TOKEN_115]",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "92513": {
1318
+ "content": "[UNUSED_TOKEN_116]",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "92514": {
1326
+ "content": "[UNUSED_TOKEN_117]",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "92515": {
1334
+ "content": "[UNUSED_TOKEN_118]",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "92516": {
1342
+ "content": "[UNUSED_TOKEN_119]",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "92517": {
1350
+ "content": "[UNUSED_TOKEN_120]",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "92518": {
1358
+ "content": "[UNUSED_TOKEN_121]",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "92519": {
1366
+ "content": "[UNUSED_TOKEN_122]",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "92520": {
1374
+ "content": "[UNUSED_TOKEN_123]",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "92521": {
1382
+ "content": "[UNUSED_TOKEN_124]",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "92522": {
1390
+ "content": "[UNUSED_TOKEN_125]",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "92523": {
1398
+ "content": "[UNUSED_TOKEN_126]",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "92524": {
1406
+ "content": "[UNUSED_TOKEN_127]",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "92525": {
1414
+ "content": "[UNUSED_TOKEN_128]",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "92526": {
1422
+ "content": "[UNUSED_TOKEN_129]",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "92527": {
1430
+ "content": "[UNUSED_TOKEN_130]",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "92528": {
1438
+ "content": "[UNUSED_TOKEN_131]",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "92529": {
1446
+ "content": "[UNUSED_TOKEN_132]",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "92530": {
1454
+ "content": "[UNUSED_TOKEN_133]",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "92531": {
1462
+ "content": "[UNUSED_TOKEN_134]",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "92532": {
1470
+ "content": "[UNUSED_TOKEN_135]",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "92533": {
1478
+ "content": "[UNUSED_TOKEN_136]",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "92534": {
1486
+ "content": "[UNUSED_TOKEN_137]",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "92535": {
1494
+ "content": "[UNUSED_TOKEN_138]",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "92536": {
1502
+ "content": "[UNUSED_TOKEN_139]",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "92537": {
1510
+ "content": "[UNUSED_TOKEN_140]",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "92538": {
1518
+ "content": "<|plugin|>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": true
1524
+ },
1525
+ "92539": {
1526
+ "content": "<|interpreter|>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": true
1532
+ },
1533
+ "92540": {
1534
+ "content": "<|action_end|>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": true
1540
+ },
1541
+ "92541": {
1542
+ "content": "<|action_start|>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": true
1548
+ },
1549
+ "92542": {
1550
+ "content": "<|im_end|>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": true
1556
+ },
1557
+ "92543": {
1558
+ "content": "<|im_start|>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": true
1564
+ },
1565
+ "92544": {
1566
+ "content": "[UNUSED_TOKEN_141]",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "92545": {
1574
+ "content": "[UNUSED_TOKEN_142]",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "92546": {
1582
+ "content": "[UNUSED_TOKEN_143]",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "92547": {
1590
+ "content": "[UNUSED_TOKEN_144]",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "92548": {
1598
+ "content": "[UNUSED_TOKEN_145]",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "92549": {
1606
+ "content": "[UNUSED_TOKEN_146]",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ }
1613
+ },
1614
+ "additional_special_tokens": [
1615
+ "<|im_start|>",
1616
+ "<|im_end|>",
1617
+ "<|action_start|>",
1618
+ "<|action_end|>",
1619
+ "<|interpreter|>",
1620
+ "<|plugin|>"
1621
+ ],
1622
+ "auto_map": {
1623
+ "AutoTokenizer": [
1624
+ "tokenization_internlm2.InternLM2Tokenizer",
1625
+ "tokenization_internlm2_fast.InternLM2TokenizerFast"
1626
+ ]
1627
+ },
1628
+ "bos_token": "<s>",
1629
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
1630
+ "clean_up_tokenization_spaces": false,
1631
+ "decode_with_prefix_space": false,
1632
+ "eos_token": "</s>",
1633
+ "legacy": false,
1634
+ "model_max_length": 1000000000000000019884624838656,
1635
+ "pad_token": "</s>",
1636
+ "sp_model_kwargs": null,
1637
+ "tokenizer_class": "InternLM2Tokenizer",
1638
+ "unk_token": "<unk>"
1639
+ }