Upload 10 files
Browse files- .gitattributes +1 -0
- README.md +726 -0
- config.json +35 -0
- generation_config.json +11 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +295 -0
- special_tokens_map.json +34 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +2013 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,726 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gemma
|
3 |
+
library_name: transformers
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
extra_gated_heading: Access Gemma on Hugging Face
|
6 |
+
extra_gated_prompt: >-
|
7 |
+
To access Gemma on Hugging Face, you’re required to review and agree to
|
8 |
+
Google’s usage license. To do this, please ensure you’re logged in to Hugging
|
9 |
+
Face and click below. Requests are processed immediately.
|
10 |
+
extra_gated_button_content: Acknowledge license
|
11 |
+
tags:
|
12 |
+
- conversational
|
13 |
+
base_model: google/gemma-2-2b
|
14 |
+
---
|
15 |
+
|
16 |
+
|
17 |
+
# Gemma 2 model card
|
18 |
+
|
19 |
+
**Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
|
20 |
+
|
21 |
+
**Resources and Technical Documentation**:
|
22 |
+
|
23 |
+
* [Responsible Generative AI Toolkit][rai-toolkit]
|
24 |
+
* [Gemma on Kaggle][kaggle-gemma]
|
25 |
+
* [Gemma on Vertex Model Garden][vertex-mg-gemma2]
|
26 |
+
|
27 |
+
**Terms of Use**: [Terms][terms]
|
28 |
+
|
29 |
+
**Authors**: Google
|
30 |
+
|
31 |
+
## Model Information
|
32 |
+
|
33 |
+
Summary description and brief definition of inputs and outputs.
|
34 |
+
|
35 |
+
### Description
|
36 |
+
|
37 |
+
Gemma is a family of lightweight, state-of-the-art open models from Google,
|
38 |
+
built from the same research and technology used to create the Gemini models.
|
39 |
+
They are text-to-text, decoder-only large language models, available in English,
|
40 |
+
with open weights for both pre-trained variants and instruction-tuned variants.
|
41 |
+
Gemma models are well-suited for a variety of text generation tasks, including
|
42 |
+
question answering, summarization, and reasoning. Their relatively small size
|
43 |
+
makes it possible to deploy them in environments with limited resources such as
|
44 |
+
a laptop, desktop or your own cloud infrastructure, democratizing access to
|
45 |
+
state of the art AI models and helping foster innovation for everyone.
|
46 |
+
|
47 |
+
### Usage
|
48 |
+
|
49 |
+
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
|
50 |
+
```sh
|
51 |
+
pip install -U transformers
|
52 |
+
```
|
53 |
+
|
54 |
+
Then, copy the snippet from the section that is relevant for your usecase.
|
55 |
+
|
56 |
+
#### Running with the `pipeline` API
|
57 |
+
|
58 |
+
```python
|
59 |
+
import torch
|
60 |
+
from transformers import pipeline
|
61 |
+
|
62 |
+
pipe = pipeline(
|
63 |
+
"text-generation",
|
64 |
+
model="google/gemma-2-2b-it",
|
65 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
66 |
+
device="cuda", # replace with "mps" to run on a Mac device
|
67 |
+
)
|
68 |
+
|
69 |
+
messages = [
|
70 |
+
{"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
|
71 |
+
]
|
72 |
+
|
73 |
+
outputs = pipe(messages, max_new_tokens=256)
|
74 |
+
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
|
75 |
+
print(assistant_response)
|
76 |
+
# Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
|
77 |
+
```
|
78 |
+
|
79 |
+
#### Running the model on a single / multi GPU
|
80 |
+
|
81 |
+
```python
|
82 |
+
# pip install accelerate
|
83 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
84 |
+
import torch
|
85 |
+
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
87 |
+
model = AutoModelForCausalLM.from_pretrained(
|
88 |
+
"google/gemma-2-2b-it",
|
89 |
+
device_map="auto",
|
90 |
+
torch_dtype=torch.bfloat16,
|
91 |
+
)
|
92 |
+
|
93 |
+
input_text = "Write me a poem about Machine Learning."
|
94 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
95 |
+
|
96 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
97 |
+
print(tokenizer.decode(outputs[0]))
|
98 |
+
```
|
99 |
+
|
100 |
+
You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
|
101 |
+
```python
|
102 |
+
messages = [
|
103 |
+
{"role": "user", "content": "Write me a poem about Machine Learning."},
|
104 |
+
]
|
105 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
|
106 |
+
|
107 |
+
outputs = model.generate(**input_ids, max_new_tokens=256)
|
108 |
+
print(tokenizer.decode(outputs[0]))
|
109 |
+
```
|
110 |
+
|
111 |
+
<a name="precisions"></a>
|
112 |
+
#### Running the model on a GPU using different precisions
|
113 |
+
|
114 |
+
The native weights of this model were exported in `bfloat16` precision.
|
115 |
+
|
116 |
+
You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
|
117 |
+
|
118 |
+
* _Upcasting to `torch.float32`_
|
119 |
+
|
120 |
+
```python
|
121 |
+
# pip install accelerate
|
122 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
123 |
+
|
124 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
125 |
+
model = AutoModelForCausalLM.from_pretrained(
|
126 |
+
"google/gemma-2-2b-it",
|
127 |
+
device_map="auto",
|
128 |
+
)
|
129 |
+
|
130 |
+
input_text = "Write me a poem about Machine Learning."
|
131 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
132 |
+
|
133 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
134 |
+
print(tokenizer.decode(outputs[0]))
|
135 |
+
```
|
136 |
+
|
137 |
+
#### Running the model through a CLI
|
138 |
+
|
139 |
+
The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
|
140 |
+
for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
|
141 |
+
for getting started, then launch the CLI through the following command:
|
142 |
+
|
143 |
+
```shell
|
144 |
+
local-gemma --model 2b --preset speed
|
145 |
+
```
|
146 |
+
|
147 |
+
#### Quantized Versions through `bitsandbytes`
|
148 |
+
|
149 |
+
<details>
|
150 |
+
<summary>
|
151 |
+
Using 8-bit precision (int8)
|
152 |
+
</summary>
|
153 |
+
|
154 |
+
```python
|
155 |
+
# pip install bitsandbytes accelerate
|
156 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
157 |
+
|
158 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
159 |
+
|
160 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
161 |
+
model = AutoModelForCausalLM.from_pretrained(
|
162 |
+
"google/gemma-2-2b-it",
|
163 |
+
quantization_config=quantization_config,
|
164 |
+
)
|
165 |
+
|
166 |
+
input_text = "Write me a poem about Machine Learning."
|
167 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
168 |
+
|
169 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
170 |
+
print(tokenizer.decode(outputs[0]))
|
171 |
+
```
|
172 |
+
</details>
|
173 |
+
|
174 |
+
<details>
|
175 |
+
<summary>
|
176 |
+
Using 4-bit precision
|
177 |
+
</summary>
|
178 |
+
|
179 |
+
```python
|
180 |
+
# pip install bitsandbytes accelerate
|
181 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
182 |
+
|
183 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
184 |
+
|
185 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
186 |
+
model = AutoModelForCausalLM.from_pretrained(
|
187 |
+
"google/gemma-2-2b-it",
|
188 |
+
quantization_config=quantization_config,
|
189 |
+
)
|
190 |
+
|
191 |
+
input_text = "Write me a poem about Machine Learning."
|
192 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
193 |
+
|
194 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
195 |
+
print(tokenizer.decode(outputs[0]))
|
196 |
+
```
|
197 |
+
</details>
|
198 |
+
|
199 |
+
#### Advanced Usage
|
200 |
+
|
201 |
+
<details>
|
202 |
+
<summary>
|
203 |
+
Torch compile
|
204 |
+
</summary>
|
205 |
+
|
206 |
+
[Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
|
207 |
+
inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
|
208 |
+
|
209 |
+
Note that two warm-up steps are required before the full inference speed is realised:
|
210 |
+
|
211 |
+
```python
|
212 |
+
import os
|
213 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
214 |
+
|
215 |
+
from transformers import AutoTokenizer, Gemma2ForCausalLM
|
216 |
+
from transformers.cache_utils import HybridCache
|
217 |
+
import torch
|
218 |
+
|
219 |
+
torch.set_float32_matmul_precision("high")
|
220 |
+
|
221 |
+
# load the model + tokenizer
|
222 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
223 |
+
model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16)
|
224 |
+
model.to("cuda")
|
225 |
+
|
226 |
+
# apply the torch compile transformation
|
227 |
+
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
228 |
+
|
229 |
+
# pre-process inputs
|
230 |
+
input_text = "The theory of special relativity states "
|
231 |
+
model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
232 |
+
prompt_length = model_inputs.input_ids.shape[1]
|
233 |
+
|
234 |
+
# set-up k/v cache
|
235 |
+
past_key_values = HybridCache(
|
236 |
+
config=model.config,
|
237 |
+
max_batch_size=1,
|
238 |
+
max_cache_len=model.config.max_position_embeddings,
|
239 |
+
device=model.device,
|
240 |
+
dtype=model.dtype
|
241 |
+
)
|
242 |
+
|
243 |
+
# enable passing kv cache to generate
|
244 |
+
model._supports_cache_class = True
|
245 |
+
model.generation_config.cache_implementation = None
|
246 |
+
|
247 |
+
# two warm-up steps
|
248 |
+
for idx in range(2):
|
249 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
250 |
+
past_key_values.reset()
|
251 |
+
|
252 |
+
# fast run
|
253 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
254 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
255 |
+
```
|
256 |
+
|
257 |
+
For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
|
258 |
+
|
259 |
+
</details>
|
260 |
+
|
261 |
+
### Chat Template
|
262 |
+
|
263 |
+
The instruction-tuned models use a chat template that must be adhered to for conversational use.
|
264 |
+
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
|
265 |
+
|
266 |
+
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
|
267 |
+
|
268 |
+
```py
|
269 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
270 |
+
import transformers
|
271 |
+
import torch
|
272 |
+
|
273 |
+
model_id = "google/gemma-2-2b-it"
|
274 |
+
dtype = torch.bfloat16
|
275 |
+
|
276 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
277 |
+
model = AutoModelForCausalLM.from_pretrained(
|
278 |
+
model_id,
|
279 |
+
device_map="cuda",
|
280 |
+
torch_dtype=dtype,)
|
281 |
+
|
282 |
+
chat = [
|
283 |
+
{ "role": "user", "content": "Write a hello world program" },
|
284 |
+
]
|
285 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
286 |
+
```
|
287 |
+
|
288 |
+
At this point, the prompt contains the following text:
|
289 |
+
|
290 |
+
```
|
291 |
+
<bos><start_of_turn>user
|
292 |
+
Write a hello world program<end_of_turn>
|
293 |
+
<start_of_turn>model
|
294 |
+
```
|
295 |
+
|
296 |
+
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
|
297 |
+
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
|
298 |
+
the `<end_of_turn>` token.
|
299 |
+
|
300 |
+
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
|
301 |
+
chat template.
|
302 |
+
|
303 |
+
After the prompt is ready, generation can be performed like this:
|
304 |
+
|
305 |
+
```py
|
306 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
307 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
|
308 |
+
print(tokenizer.decode(outputs[0]))
|
309 |
+
```
|
310 |
+
|
311 |
+
### Inputs and outputs
|
312 |
+
|
313 |
+
* **Input:** Text string, such as a question, a prompt, or a document to be
|
314 |
+
summarized.
|
315 |
+
* **Output:** Generated English-language text in response to the input, such
|
316 |
+
as an answer to a question, or a summary of a document.
|
317 |
+
|
318 |
+
### Citation
|
319 |
+
|
320 |
+
```none
|
321 |
+
@article{gemma_2024,
|
322 |
+
title={Gemma},
|
323 |
+
url={https://www.kaggle.com/m/3301},
|
324 |
+
DOI={10.34740/KAGGLE/M/3301},
|
325 |
+
publisher={Kaggle},
|
326 |
+
author={Gemma Team},
|
327 |
+
year={2024}
|
328 |
+
}
|
329 |
+
```
|
330 |
+
|
331 |
+
## Model Data
|
332 |
+
|
333 |
+
Data used for model training and how the data was processed.
|
334 |
+
|
335 |
+
### Training Dataset
|
336 |
+
|
337 |
+
These models were trained on a dataset of text data that includes a wide variety
|
338 |
+
of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
|
339 |
+
trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
|
340 |
+
Here are the key components:
|
341 |
+
|
342 |
+
* Web Documents: A diverse collection of web text ensures the model is exposed
|
343 |
+
to a broad range of linguistic styles, topics, and vocabulary. Primarily
|
344 |
+
English-language content.
|
345 |
+
* Code: Exposing the model to code helps it to learn the syntax and patterns of
|
346 |
+
programming languages, which improves its ability to generate code or
|
347 |
+
understand code-related questions.
|
348 |
+
* Mathematics: Training on mathematical text helps the model learn logical
|
349 |
+
reasoning, symbolic representation, and to address mathematical queries.
|
350 |
+
|
351 |
+
The combination of these diverse data sources is crucial for training a powerful
|
352 |
+
language model that can handle a wide variety of different tasks and text
|
353 |
+
formats.
|
354 |
+
|
355 |
+
### Data Preprocessing
|
356 |
+
|
357 |
+
Here are the key data cleaning and filtering methods applied to the training
|
358 |
+
data:
|
359 |
+
|
360 |
+
* CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
|
361 |
+
applied at multiple stages in the data preparation process to ensure the
|
362 |
+
exclusion of harmful and illegal content.
|
363 |
+
* Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
|
364 |
+
reliable, automated techniques were used to filter out certain personal
|
365 |
+
information and other sensitive data from training sets.
|
366 |
+
* Additional methods: Filtering based on content quality and safety in line with
|
367 |
+
[our policies][safety-policies].
|
368 |
+
|
369 |
+
## Implementation Information
|
370 |
+
|
371 |
+
Details about the model internals.
|
372 |
+
|
373 |
+
### Hardware
|
374 |
+
|
375 |
+
Gemma was trained using the latest generation of
|
376 |
+
[Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
|
377 |
+
|
378 |
+
Training large language models requires significant computational power. TPUs,
|
379 |
+
designed specifically for matrix operations common in machine learning, offer
|
380 |
+
several advantages in this domain:
|
381 |
+
|
382 |
+
* Performance: TPUs are specifically designed to handle the massive computations
|
383 |
+
involved in training LLMs. They can speed up training considerably compared to
|
384 |
+
CPUs.
|
385 |
+
* Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
|
386 |
+
for the handling of large models and batch sizes during training. This can
|
387 |
+
lead to better model quality.
|
388 |
+
* Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
|
389 |
+
handling the growing complexity of large foundation models. You can distribute
|
390 |
+
training across multiple TPU devices for faster and more efficient processing.
|
391 |
+
* Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
|
392 |
+
solution for training large models compared to CPU-based infrastructure,
|
393 |
+
especially when considering the time and resources saved due to faster
|
394 |
+
training.
|
395 |
+
* These advantages are aligned with
|
396 |
+
[Google's commitments to operate sustainably][sustainability].
|
397 |
+
|
398 |
+
### Software
|
399 |
+
|
400 |
+
Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
|
401 |
+
|
402 |
+
JAX allows researchers to take advantage of the latest generation of hardware,
|
403 |
+
including TPUs, for faster and more efficient training of large models.
|
404 |
+
|
405 |
+
ML Pathways is Google's latest effort to build artificially intelligent systems
|
406 |
+
capable of generalizing across multiple tasks. This is specially suitable for
|
407 |
+
[foundation models][foundation-models], including large language models like
|
408 |
+
these ones.
|
409 |
+
|
410 |
+
Together, JAX and ML Pathways are used as described in the
|
411 |
+
[paper about the Gemini family of models][gemini-2-paper]; "the 'single
|
412 |
+
controller' programming model of Jax and Pathways allows a single Python
|
413 |
+
process to orchestrate the entire training run, dramatically simplifying the
|
414 |
+
development workflow."
|
415 |
+
|
416 |
+
## Evaluation
|
417 |
+
|
418 |
+
Model evaluation metrics and results.
|
419 |
+
|
420 |
+
### Benchmark Results
|
421 |
+
|
422 |
+
These models were evaluated against a large collection of different datasets and
|
423 |
+
metrics to cover different aspects of text generation:
|
424 |
+
|
425 |
+
| Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
|
426 |
+
| ------------------------------ | ------------- | ------------- | ------------- | -------------- |
|
427 |
+
| [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
|
428 |
+
| [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
|
429 |
+
| [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
|
430 |
+
| [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
|
431 |
+
| [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
|
432 |
+
| [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
|
433 |
+
| [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
|
434 |
+
| [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
|
435 |
+
| [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
|
436 |
+
| [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
|
437 |
+
| [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
|
438 |
+
| [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
|
439 |
+
| [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
|
440 |
+
| [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
|
441 |
+
| [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
|
442 |
+
| [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
|
443 |
+
| [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
|
444 |
+
|
445 |
+
## Ethics and Safety
|
446 |
+
|
447 |
+
Ethics and safety evaluation approach and results.
|
448 |
+
|
449 |
+
### Evaluation Approach
|
450 |
+
|
451 |
+
Our evaluation methods include structured evaluations and internal red-teaming
|
452 |
+
testing of relevant content policies. Red-teaming was conducted by a number of
|
453 |
+
different teams, each with different goals and human evaluation metrics. These
|
454 |
+
models were evaluated against a number of different categories relevant to
|
455 |
+
ethics and safety, including:
|
456 |
+
|
457 |
+
* Text-to-Text Content Safety: Human evaluation on prompts covering safety
|
458 |
+
policies including child sexual abuse and exploitation, harassment, violence
|
459 |
+
and gore, and hate speech.
|
460 |
+
* Text-to-Text Representational Harms: Benchmark against relevant academic
|
461 |
+
datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
|
462 |
+
* Memorization: Automated evaluation of memorization of training data, including
|
463 |
+
the risk of personally identifiable information exposure.
|
464 |
+
* Large-scale harm: Tests for "dangerous capabilities," such as chemical,
|
465 |
+
biological, radiological, and nuclear (CBRN) risks.
|
466 |
+
|
467 |
+
### Evaluation Results
|
468 |
+
|
469 |
+
The results of ethics and safety evaluations are within acceptable thresholds
|
470 |
+
for meeting [internal policies][safety-policies] for categories such as child
|
471 |
+
safety, content safety, representational harms, memorization, large-scale harms.
|
472 |
+
On top of robust internal evaluations, the results of well-known safety
|
473 |
+
benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
|
474 |
+
are shown here.
|
475 |
+
|
476 |
+
#### Gemma 2.0
|
477 |
+
|
478 |
+
| Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
|
479 |
+
| ------------------------ | ------------- | ------------- | ------------- | -------------- |
|
480 |
+
| [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
|
481 |
+
| [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
|
482 |
+
| [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
|
483 |
+
| [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
|
484 |
+
| [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
|
485 |
+
| [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
|
486 |
+
| [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
|
487 |
+
| [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
|
488 |
+
| [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
|
489 |
+
|
490 |
+
## Dangerous Capability Evaluations
|
491 |
+
|
492 |
+
### Evaluation Approach
|
493 |
+
|
494 |
+
We evaluated a range of dangerous capabilities:
|
495 |
+
|
496 |
+
- **Offensive cybersecurity:** To assess the model's potential for misuse in
|
497 |
+
cybersecurity contexts, we utilized both publicly available
|
498 |
+
Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
|
499 |
+
well as internally developed CTF challenges. These evaluations measure the
|
500 |
+
model's ability to exploit vulnerabilities and gain unauthorized access in
|
501 |
+
simulated environments.
|
502 |
+
- **Self-proliferation:** We evaluated the model's capacity for
|
503 |
+
self-proliferation by designing tasks that involve resource acquisition, code
|
504 |
+
execution, and interaction with remote systems. These evaluations assess
|
505 |
+
the model's ability to independently replicate and spread.
|
506 |
+
- **Persuasion:** To evaluate the model's capacity for persuasion and
|
507 |
+
deception, we conducted human persuasion studies. These studies involved
|
508 |
+
scenarios that measure the model's ability to build rapport, influence
|
509 |
+
beliefs, and elicit specific actions from human participants.
|
510 |
+
|
511 |
+
### Evaluation Results
|
512 |
+
|
513 |
+
All evaluations are described in detail in
|
514 |
+
[Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
|
515 |
+
and in brief in the
|
516 |
+
[Gemma 2 technical report][tech-report].
|
517 |
+
|
518 |
+
<table>
|
519 |
+
<thead>
|
520 |
+
<tr>
|
521 |
+
<th>Evaluation</th>
|
522 |
+
<th>Capability</th>
|
523 |
+
<th>Gemma 2 IT 27B</th>
|
524 |
+
</tr>
|
525 |
+
</thead>
|
526 |
+
<tbody>
|
527 |
+
<tr>
|
528 |
+
<td>InterCode-CTF</td>
|
529 |
+
<td>Offensive cybersecurity</td>
|
530 |
+
<td>34/76 challenges</td>
|
531 |
+
</tr>
|
532 |
+
<tr>
|
533 |
+
<td>Internal CTF</td>
|
534 |
+
<td>Offensive cybersecurity</td>
|
535 |
+
<td>1/13 challenges</td>
|
536 |
+
</tr>
|
537 |
+
<tr>
|
538 |
+
<td>Hack the Box</td>
|
539 |
+
<td>Offensive cybersecurity</td>
|
540 |
+
<td>0/13 challenges</td>
|
541 |
+
</tr>
|
542 |
+
<tr>
|
543 |
+
<td>Self-proliferation early warning</td>
|
544 |
+
<td>Self-proliferation</td>
|
545 |
+
<td>1/10 challenges</td>
|
546 |
+
</tr>
|
547 |
+
<tr>
|
548 |
+
<td>Charm offensive</td>
|
549 |
+
<td>Persuasion</td>
|
550 |
+
<td>Percent of participants agreeing:
|
551 |
+
81% interesting,
|
552 |
+
75% would speak again,
|
553 |
+
80% made personal connection</td>
|
554 |
+
</tr>
|
555 |
+
<tr>
|
556 |
+
<td>Click Links</td>
|
557 |
+
<td>Persuasion</td>
|
558 |
+
<td>34% of participants</td>
|
559 |
+
</tr>
|
560 |
+
<tr>
|
561 |
+
<td>Find Info</td>
|
562 |
+
<td>Persuasion</td>
|
563 |
+
<td>9% of participants</td>
|
564 |
+
</tr>
|
565 |
+
<tr>
|
566 |
+
<td>Run Code</td>
|
567 |
+
<td>Persuasion</td>
|
568 |
+
<td>11% of participants</td>
|
569 |
+
</tr>
|
570 |
+
<tr>
|
571 |
+
<td>Money talks</td>
|
572 |
+
<td>Persuasion</td>
|
573 |
+
<td>£3.72 mean donation</td>
|
574 |
+
</tr>
|
575 |
+
<tr>
|
576 |
+
<td>Web of Lies</td>
|
577 |
+
<td>Persuasion</td>
|
578 |
+
<td>18% mean shift towards correct belief, 1% mean shift towards
|
579 |
+
incorrect belief</td>
|
580 |
+
</tr>
|
581 |
+
</tbody>
|
582 |
+
</table>
|
583 |
+
|
584 |
+
## Usage and Limitations
|
585 |
+
|
586 |
+
These models have certain limitations that users should be aware of.
|
587 |
+
|
588 |
+
### Intended Usage
|
589 |
+
|
590 |
+
Open Large Language Models (LLMs) have a wide range of applications across
|
591 |
+
various industries and domains. The following list of potential uses is not
|
592 |
+
comprehensive. The purpose of this list is to provide contextual information
|
593 |
+
about the possible use-cases that the model creators considered as part of model
|
594 |
+
training and development.
|
595 |
+
|
596 |
+
* Content Creation and Communication
|
597 |
+
* Text Generation: These models can be used to generate creative text formats
|
598 |
+
such as poems, scripts, code, marketing copy, and email drafts.
|
599 |
+
* Chatbots and Conversational AI: Power conversational interfaces for customer
|
600 |
+
service, virtual assistants, or interactive applications.
|
601 |
+
* Text Summarization: Generate concise summaries of a text corpus, research
|
602 |
+
papers, or reports.
|
603 |
+
* Research and Education
|
604 |
+
* Natural Language Processing (NLP) Research: These models can serve as a
|
605 |
+
foundation for researchers to experiment with NLP techniques, develop
|
606 |
+
algorithms, and contribute to the advancement of the field.
|
607 |
+
* Language Learning Tools: Support interactive language learning experiences,
|
608 |
+
aiding in grammar correction or providing writing practice.
|
609 |
+
* Knowledge Exploration: Assist researchers in exploring large bodies of text
|
610 |
+
by generating summaries or answering questions about specific topics.
|
611 |
+
|
612 |
+
### Limitations
|
613 |
+
|
614 |
+
* Training Data
|
615 |
+
* The quality and diversity of the training data significantly influence the
|
616 |
+
model's capabilities. Biases or gaps in the training data can lead to
|
617 |
+
limitations in the model's responses.
|
618 |
+
* The scope of the training dataset determines the subject areas the model can
|
619 |
+
handle effectively.
|
620 |
+
* Context and Task Complexity
|
621 |
+
* LLMs are better at tasks that can be framed with clear prompts and
|
622 |
+
instructions. Open-ended or highly complex tasks might be challenging.
|
623 |
+
* A model's performance can be influenced by the amount of context provided
|
624 |
+
(longer context generally leads to better outputs, up to a certain point).
|
625 |
+
* Language Ambiguity and Nuance
|
626 |
+
* Natural language is inherently complex. LLMs might struggle to grasp subtle
|
627 |
+
nuances, sarcasm, or figurative language.
|
628 |
+
* Factual Accuracy
|
629 |
+
* LLMs generate responses based on information they learned from their
|
630 |
+
training datasets, but they are not knowledge bases. They may generate
|
631 |
+
incorrect or outdated factual statements.
|
632 |
+
* Common Sense
|
633 |
+
* LLMs rely on statistical patterns in language. They might lack the ability
|
634 |
+
to apply common sense reasoning in certain situations.
|
635 |
+
|
636 |
+
### Ethical Considerations and Risks
|
637 |
+
|
638 |
+
The development of large language models (LLMs) raises several ethical concerns.
|
639 |
+
In creating an open model, we have carefully considered the following:
|
640 |
+
|
641 |
+
* Bias and Fairness
|
642 |
+
* LLMs trained on large-scale, real-world text data can reflect socio-cultural
|
643 |
+
biases embedded in the training material. These models underwent careful
|
644 |
+
scrutiny, input data pre-processing described and posterior evaluations
|
645 |
+
reported in this card.
|
646 |
+
* Misinformation and Misuse
|
647 |
+
* LLMs can be misused to generate text that is false, misleading, or harmful.
|
648 |
+
* Guidelines are provided for responsible use with the model, see the
|
649 |
+
[Responsible Generative AI Toolkit][rai-toolkit].
|
650 |
+
* Transparency and Accountability:
|
651 |
+
* This model card summarizes details on the models' architecture,
|
652 |
+
capabilities, limitations, and evaluation processes.
|
653 |
+
* A responsibly developed open model offers the opportunity to share
|
654 |
+
innovation by making LLM technology accessible to developers and researchers
|
655 |
+
across the AI ecosystem.
|
656 |
+
|
657 |
+
Risks identified and mitigations:
|
658 |
+
|
659 |
+
* Perpetuation of biases: It's encouraged to perform continuous monitoring
|
660 |
+
(using evaluation metrics, human review) and the exploration of de-biasing
|
661 |
+
techniques during model training, fine-tuning, and other use cases.
|
662 |
+
* Generation of harmful content: Mechanisms and guidelines for content safety
|
663 |
+
are essential. Developers are encouraged to exercise caution and implement
|
664 |
+
appropriate content safety safeguards based on their specific product policies
|
665 |
+
and application use cases.
|
666 |
+
* Misuse for malicious purposes: Technical limitations and developer and
|
667 |
+
end-user education can help mitigate against malicious applications of LLMs.
|
668 |
+
Educational resources and reporting mechanisms for users to flag misuse are
|
669 |
+
provided. Prohibited uses of Gemma models are outlined in the
|
670 |
+
[Gemma Prohibited Use Policy][prohibited-use].
|
671 |
+
* Privacy violations: Models were trained on data filtered for removal of PII
|
672 |
+
(Personally Identifiable Information). Developers are encouraged to adhere to
|
673 |
+
privacy regulations with privacy-preserving techniques.
|
674 |
+
|
675 |
+
### Benefits
|
676 |
+
|
677 |
+
At the time of release, this family of models provides high-performance open
|
678 |
+
large language model implementations designed from the ground up for Responsible
|
679 |
+
AI development compared to similarly sized models.
|
680 |
+
|
681 |
+
Using the benchmark evaluation metrics described in this document, these models
|
682 |
+
have shown to provide superior performance to other, comparably-sized open model
|
683 |
+
alternatives.
|
684 |
+
|
685 |
+
[tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
|
686 |
+
[rai-toolkit]: https://ai.google.dev/responsible
|
687 |
+
[kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
|
688 |
+
[terms]: https://ai.google.dev/gemma/terms
|
689 |
+
[vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
|
690 |
+
[sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
|
691 |
+
[safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
|
692 |
+
[prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
|
693 |
+
[tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
|
694 |
+
[sustainability]: https://sustainability.google/operating-sustainably/
|
695 |
+
[jax]: https://github.com/google/jax
|
696 |
+
[ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
|
697 |
+
[sustainability]: https://sustainability.google/operating-sustainably/
|
698 |
+
[foundation-models]: https://ai.google/discover/foundation-models/
|
699 |
+
[gemini-2-paper]: https://goo.gle/gemma2report
|
700 |
+
[mmlu]: https://arxiv.org/abs/2009.03300
|
701 |
+
[hellaswag]: https://arxiv.org/abs/1905.07830
|
702 |
+
[piqa]: https://arxiv.org/abs/1911.11641
|
703 |
+
[socialiqa]: https://arxiv.org/abs/1904.09728
|
704 |
+
[boolq]: https://arxiv.org/abs/1905.10044
|
705 |
+
[winogrande]: https://arxiv.org/abs/1907.10641
|
706 |
+
[commonsenseqa]: https://arxiv.org/abs/1811.00937
|
707 |
+
[openbookqa]: https://arxiv.org/abs/1809.02789
|
708 |
+
[arc]: https://arxiv.org/abs/1911.01547
|
709 |
+
[triviaqa]: https://arxiv.org/abs/1705.03551
|
710 |
+
[naturalq]: https://github.com/google-research-datasets/natural-questions
|
711 |
+
[humaneval]: https://arxiv.org/abs/2107.03374
|
712 |
+
[mbpp]: https://arxiv.org/abs/2108.07732
|
713 |
+
[gsm8k]: https://arxiv.org/abs/2110.14168
|
714 |
+
[realtox]: https://arxiv.org/abs/2009.11462
|
715 |
+
[bold]: https://arxiv.org/abs/2101.11718
|
716 |
+
[crows]: https://aclanthology.org/2020.emnlp-main.154/
|
717 |
+
[bbq]: https://arxiv.org/abs/2110.08193v2
|
718 |
+
[winogender]: https://arxiv.org/abs/1804.09301
|
719 |
+
[truthfulqa]: https://arxiv.org/abs/2109.07958
|
720 |
+
[winobias]: https://arxiv.org/abs/1804.06876
|
721 |
+
[math]: https://arxiv.org/abs/2103.03874
|
722 |
+
[agieval]: https://arxiv.org/abs/2304.06364
|
723 |
+
[drop]: https://arxiv.org/abs/1903.00161
|
724 |
+
[big-bench]: https://arxiv.org/abs/2206.04615
|
725 |
+
[toxigen]: https://arxiv.org/abs/2203.09509
|
726 |
+
[eval-danger]: https://arxiv.org/abs/2403.13793
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Gemma2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attn_logit_softcapping": 50.0,
|
8 |
+
"bos_token_id": 2,
|
9 |
+
"cache_implementation": "hybrid",
|
10 |
+
"eos_token_id": [
|
11 |
+
1,
|
12 |
+
107
|
13 |
+
],
|
14 |
+
"final_logit_softcapping": 30.0,
|
15 |
+
"head_dim": 256,
|
16 |
+
"hidden_act": "gelu_pytorch_tanh",
|
17 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
18 |
+
"hidden_size": 2304,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 9216,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"model_type": "gemma2",
|
23 |
+
"num_attention_heads": 8,
|
24 |
+
"num_hidden_layers": 26,
|
25 |
+
"num_key_value_heads": 4,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"query_pre_attn_scalar": 256,
|
28 |
+
"rms_norm_eps": 1e-06,
|
29 |
+
"rope_theta": 10000.0,
|
30 |
+
"sliding_window": 4096,
|
31 |
+
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.42.4",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 256000
|
35 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"cache_implementation": "hybrid",
|
5 |
+
"eos_token_id": [
|
6 |
+
1,
|
7 |
+
107
|
8 |
+
],
|
9 |
+
"pad_token_id": 0,
|
10 |
+
"transformers_version": "4.42.4"
|
11 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:532d792c9178805064170a3ec485b7dedbfccc6fd297b92c31a6091b6c7e41bf
|
3 |
+
size 4988025760
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d6d9ce84db398fb6e0191f91542e5da0a73da2cb695e172a24edc2146dc8d20
|
3 |
+
size 240691728
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5228683776
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.19.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.19.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.20.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.20.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.21.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.21.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.22.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.22.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.23.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.23.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
294 |
+
}
|
295 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<start_of_turn>",
|
4 |
+
"<end_of_turn>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<bos>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": {
|
21 |
+
"content": "<pad>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"unk_token": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f289bc05132635a8bc7aca7aa21255efd5e18f3710f43e3cdb96bcd41be4922
|
3 |
+
size 17525357
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
|
3 |
+
size 4241003
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2013 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<pad>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<bos>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<mask>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<2mass>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": false
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "[@BOS@]",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": false
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<unused0>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": false
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<unused1>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": false
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<unused2>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": false
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<unused3>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": false
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<unused4>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": false
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<unused5>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": false
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<unused6>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": false
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<unused7>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<unused8>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<unused9>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"17": {
|
142 |
+
"content": "<unused10>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"18": {
|
150 |
+
"content": "<unused11>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"19": {
|
158 |
+
"content": "<unused12>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"20": {
|
166 |
+
"content": "<unused13>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"21": {
|
174 |
+
"content": "<unused14>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"22": {
|
182 |
+
"content": "<unused15>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"23": {
|
190 |
+
"content": "<unused16>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"24": {
|
198 |
+
"content": "<unused17>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"25": {
|
206 |
+
"content": "<unused18>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"26": {
|
214 |
+
"content": "<unused19>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"27": {
|
222 |
+
"content": "<unused20>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"28": {
|
230 |
+
"content": "<unused21>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"29": {
|
238 |
+
"content": "<unused22>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"30": {
|
246 |
+
"content": "<unused23>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"31": {
|
254 |
+
"content": "<unused24>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"32": {
|
262 |
+
"content": "<unused25>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"33": {
|
270 |
+
"content": "<unused26>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"34": {
|
278 |
+
"content": "<unused27>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"35": {
|
286 |
+
"content": "<unused28>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"36": {
|
294 |
+
"content": "<unused29>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": false
|
300 |
+
},
|
301 |
+
"37": {
|
302 |
+
"content": "<unused30>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": false
|
308 |
+
},
|
309 |
+
"38": {
|
310 |
+
"content": "<unused31>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": false
|
316 |
+
},
|
317 |
+
"39": {
|
318 |
+
"content": "<unused32>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": false
|
324 |
+
},
|
325 |
+
"40": {
|
326 |
+
"content": "<unused33>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": false
|
332 |
+
},
|
333 |
+
"41": {
|
334 |
+
"content": "<unused34>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": false
|
340 |
+
},
|
341 |
+
"42": {
|
342 |
+
"content": "<unused35>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": false
|
348 |
+
},
|
349 |
+
"43": {
|
350 |
+
"content": "<unused36>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": false
|
356 |
+
},
|
357 |
+
"44": {
|
358 |
+
"content": "<unused37>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": false
|
364 |
+
},
|
365 |
+
"45": {
|
366 |
+
"content": "<unused38>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": false
|
372 |
+
},
|
373 |
+
"46": {
|
374 |
+
"content": "<unused39>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": false
|
380 |
+
},
|
381 |
+
"47": {
|
382 |
+
"content": "<unused40>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": false
|
388 |
+
},
|
389 |
+
"48": {
|
390 |
+
"content": "<unused41>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": false
|
396 |
+
},
|
397 |
+
"49": {
|
398 |
+
"content": "<unused42>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": false
|
404 |
+
},
|
405 |
+
"50": {
|
406 |
+
"content": "<unused43>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": false
|
412 |
+
},
|
413 |
+
"51": {
|
414 |
+
"content": "<unused44>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": false
|
420 |
+
},
|
421 |
+
"52": {
|
422 |
+
"content": "<unused45>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": false,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": false
|
428 |
+
},
|
429 |
+
"53": {
|
430 |
+
"content": "<unused46>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": false,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": false
|
436 |
+
},
|
437 |
+
"54": {
|
438 |
+
"content": "<unused47>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": false
|
444 |
+
},
|
445 |
+
"55": {
|
446 |
+
"content": "<unused48>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": false,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": false
|
452 |
+
},
|
453 |
+
"56": {
|
454 |
+
"content": "<unused49>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": false,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": false
|
460 |
+
},
|
461 |
+
"57": {
|
462 |
+
"content": "<unused50>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": false,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": false
|
468 |
+
},
|
469 |
+
"58": {
|
470 |
+
"content": "<unused51>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": false,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": false
|
476 |
+
},
|
477 |
+
"59": {
|
478 |
+
"content": "<unused52>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": false,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": false
|
484 |
+
},
|
485 |
+
"60": {
|
486 |
+
"content": "<unused53>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": false,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": false
|
492 |
+
},
|
493 |
+
"61": {
|
494 |
+
"content": "<unused54>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": false,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": false
|
500 |
+
},
|
501 |
+
"62": {
|
502 |
+
"content": "<unused55>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": false,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": false
|
508 |
+
},
|
509 |
+
"63": {
|
510 |
+
"content": "<unused56>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": false,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": false
|
516 |
+
},
|
517 |
+
"64": {
|
518 |
+
"content": "<unused57>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": false,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": false
|
524 |
+
},
|
525 |
+
"65": {
|
526 |
+
"content": "<unused58>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": false,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": false
|
532 |
+
},
|
533 |
+
"66": {
|
534 |
+
"content": "<unused59>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": false,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": false
|
540 |
+
},
|
541 |
+
"67": {
|
542 |
+
"content": "<unused60>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": false,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": false
|
548 |
+
},
|
549 |
+
"68": {
|
550 |
+
"content": "<unused61>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": false,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": false
|
556 |
+
},
|
557 |
+
"69": {
|
558 |
+
"content": "<unused62>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": false,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": false
|
564 |
+
},
|
565 |
+
"70": {
|
566 |
+
"content": "<unused63>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": false,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": false
|
572 |
+
},
|
573 |
+
"71": {
|
574 |
+
"content": "<unused64>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": false,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": false
|
580 |
+
},
|
581 |
+
"72": {
|
582 |
+
"content": "<unused65>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": false,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": false
|
588 |
+
},
|
589 |
+
"73": {
|
590 |
+
"content": "<unused66>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": false,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": false
|
596 |
+
},
|
597 |
+
"74": {
|
598 |
+
"content": "<unused67>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": false,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": false
|
604 |
+
},
|
605 |
+
"75": {
|
606 |
+
"content": "<unused68>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": false,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": false
|
612 |
+
},
|
613 |
+
"76": {
|
614 |
+
"content": "<unused69>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": false,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": false
|
620 |
+
},
|
621 |
+
"77": {
|
622 |
+
"content": "<unused70>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": false,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": false
|
628 |
+
},
|
629 |
+
"78": {
|
630 |
+
"content": "<unused71>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": false,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": false
|
636 |
+
},
|
637 |
+
"79": {
|
638 |
+
"content": "<unused72>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": false,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": false
|
644 |
+
},
|
645 |
+
"80": {
|
646 |
+
"content": "<unused73>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": false,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": false
|
652 |
+
},
|
653 |
+
"81": {
|
654 |
+
"content": "<unused74>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": false,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": false
|
660 |
+
},
|
661 |
+
"82": {
|
662 |
+
"content": "<unused75>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": false,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": false
|
668 |
+
},
|
669 |
+
"83": {
|
670 |
+
"content": "<unused76>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": false,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": false
|
676 |
+
},
|
677 |
+
"84": {
|
678 |
+
"content": "<unused77>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": false,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": false
|
684 |
+
},
|
685 |
+
"85": {
|
686 |
+
"content": "<unused78>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": false,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": false
|
692 |
+
},
|
693 |
+
"86": {
|
694 |
+
"content": "<unused79>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": false,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": false
|
700 |
+
},
|
701 |
+
"87": {
|
702 |
+
"content": "<unused80>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": false,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": false
|
708 |
+
},
|
709 |
+
"88": {
|
710 |
+
"content": "<unused81>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": false,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": false
|
716 |
+
},
|
717 |
+
"89": {
|
718 |
+
"content": "<unused82>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": false,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": false
|
724 |
+
},
|
725 |
+
"90": {
|
726 |
+
"content": "<unused83>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": false,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": false
|
732 |
+
},
|
733 |
+
"91": {
|
734 |
+
"content": "<unused84>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": false,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": false
|
740 |
+
},
|
741 |
+
"92": {
|
742 |
+
"content": "<unused85>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": false,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": false
|
748 |
+
},
|
749 |
+
"93": {
|
750 |
+
"content": "<unused86>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": false,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": false
|
756 |
+
},
|
757 |
+
"94": {
|
758 |
+
"content": "<unused87>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": false,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": false
|
764 |
+
},
|
765 |
+
"95": {
|
766 |
+
"content": "<unused88>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": false,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": false
|
772 |
+
},
|
773 |
+
"96": {
|
774 |
+
"content": "<unused89>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": false,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": false
|
780 |
+
},
|
781 |
+
"97": {
|
782 |
+
"content": "<unused90>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": false,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": false
|
788 |
+
},
|
789 |
+
"98": {
|
790 |
+
"content": "<unused91>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": false,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": false
|
796 |
+
},
|
797 |
+
"99": {
|
798 |
+
"content": "<unused92>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": false,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": false
|
804 |
+
},
|
805 |
+
"100": {
|
806 |
+
"content": "<unused93>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": false,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": false
|
812 |
+
},
|
813 |
+
"101": {
|
814 |
+
"content": "<unused94>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": false,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": false
|
820 |
+
},
|
821 |
+
"102": {
|
822 |
+
"content": "<unused95>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": false,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": false
|
828 |
+
},
|
829 |
+
"103": {
|
830 |
+
"content": "<unused96>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": false,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": false
|
836 |
+
},
|
837 |
+
"104": {
|
838 |
+
"content": "<unused97>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": false,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": false
|
844 |
+
},
|
845 |
+
"105": {
|
846 |
+
"content": "<unused98>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": false,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": false
|
852 |
+
},
|
853 |
+
"106": {
|
854 |
+
"content": "<start_of_turn>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": false,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": true
|
860 |
+
},
|
861 |
+
"107": {
|
862 |
+
"content": "<end_of_turn>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": false,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": true
|
868 |
+
},
|
869 |
+
"108": {
|
870 |
+
"content": "\n",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": false,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": false
|
876 |
+
},
|
877 |
+
"109": {
|
878 |
+
"content": "\n\n",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": false,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": false
|
884 |
+
},
|
885 |
+
"110": {
|
886 |
+
"content": "\n\n\n",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": false,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": false
|
892 |
+
},
|
893 |
+
"111": {
|
894 |
+
"content": "\n\n\n\n",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": false,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": false
|
900 |
+
},
|
901 |
+
"112": {
|
902 |
+
"content": "\n\n\n\n\n",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": false,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": false
|
908 |
+
},
|
909 |
+
"113": {
|
910 |
+
"content": "\n\n\n\n\n\n",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": false,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": false
|
916 |
+
},
|
917 |
+
"114": {
|
918 |
+
"content": "\n\n\n\n\n\n\n",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": false,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": false
|
924 |
+
},
|
925 |
+
"115": {
|
926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": false,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": false
|
932 |
+
},
|
933 |
+
"116": {
|
934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": false,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": false
|
940 |
+
},
|
941 |
+
"117": {
|
942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": false,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": false
|
948 |
+
},
|
949 |
+
"118": {
|
950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": false,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": false
|
956 |
+
},
|
957 |
+
"119": {
|
958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": false,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": false
|
964 |
+
},
|
965 |
+
"120": {
|
966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": false,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": false
|
972 |
+
},
|
973 |
+
"121": {
|
974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": false,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": false
|
980 |
+
},
|
981 |
+
"122": {
|
982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": false,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": false
|
988 |
+
},
|
989 |
+
"123": {
|
990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": false,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": false
|
996 |
+
},
|
997 |
+
"124": {
|
998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": false,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": false
|
1004 |
+
},
|
1005 |
+
"125": {
|
1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": false,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": false
|
1012 |
+
},
|
1013 |
+
"126": {
|
1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1015 |
+
"lstrip": false,
|
1016 |
+
"normalized": false,
|
1017 |
+
"rstrip": false,
|
1018 |
+
"single_word": false,
|
1019 |
+
"special": false
|
1020 |
+
},
|
1021 |
+
"127": {
|
1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1023 |
+
"lstrip": false,
|
1024 |
+
"normalized": false,
|
1025 |
+
"rstrip": false,
|
1026 |
+
"single_word": false,
|
1027 |
+
"special": false
|
1028 |
+
},
|
1029 |
+
"128": {
|
1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1031 |
+
"lstrip": false,
|
1032 |
+
"normalized": false,
|
1033 |
+
"rstrip": false,
|
1034 |
+
"single_word": false,
|
1035 |
+
"special": false
|
1036 |
+
},
|
1037 |
+
"129": {
|
1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1039 |
+
"lstrip": false,
|
1040 |
+
"normalized": false,
|
1041 |
+
"rstrip": false,
|
1042 |
+
"single_word": false,
|
1043 |
+
"special": false
|
1044 |
+
},
|
1045 |
+
"130": {
|
1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1047 |
+
"lstrip": false,
|
1048 |
+
"normalized": false,
|
1049 |
+
"rstrip": false,
|
1050 |
+
"single_word": false,
|
1051 |
+
"special": false
|
1052 |
+
},
|
1053 |
+
"131": {
|
1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": false,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false,
|
1059 |
+
"special": false
|
1060 |
+
},
|
1061 |
+
"132": {
|
1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1063 |
+
"lstrip": false,
|
1064 |
+
"normalized": false,
|
1065 |
+
"rstrip": false,
|
1066 |
+
"single_word": false,
|
1067 |
+
"special": false
|
1068 |
+
},
|
1069 |
+
"133": {
|
1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1071 |
+
"lstrip": false,
|
1072 |
+
"normalized": false,
|
1073 |
+
"rstrip": false,
|
1074 |
+
"single_word": false,
|
1075 |
+
"special": false
|
1076 |
+
},
|
1077 |
+
"134": {
|
1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1079 |
+
"lstrip": false,
|
1080 |
+
"normalized": false,
|
1081 |
+
"rstrip": false,
|
1082 |
+
"single_word": false,
|
1083 |
+
"special": false
|
1084 |
+
},
|
1085 |
+
"135": {
|
1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1087 |
+
"lstrip": false,
|
1088 |
+
"normalized": false,
|
1089 |
+
"rstrip": false,
|
1090 |
+
"single_word": false,
|
1091 |
+
"special": false
|
1092 |
+
},
|
1093 |
+
"136": {
|
1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1095 |
+
"lstrip": false,
|
1096 |
+
"normalized": false,
|
1097 |
+
"rstrip": false,
|
1098 |
+
"single_word": false,
|
1099 |
+
"special": false
|
1100 |
+
},
|
1101 |
+
"137": {
|
1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1103 |
+
"lstrip": false,
|
1104 |
+
"normalized": false,
|
1105 |
+
"rstrip": false,
|
1106 |
+
"single_word": false,
|
1107 |
+
"special": false
|
1108 |
+
},
|
1109 |
+
"138": {
|
1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": false,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false,
|
1115 |
+
"special": false
|
1116 |
+
},
|
1117 |
+
"139": {
|
1118 |
+
"content": "▁▁",
|
1119 |
+
"lstrip": false,
|
1120 |
+
"normalized": false,
|
1121 |
+
"rstrip": false,
|
1122 |
+
"single_word": false,
|
1123 |
+
"special": false
|
1124 |
+
},
|
1125 |
+
"140": {
|
1126 |
+
"content": "▁▁▁",
|
1127 |
+
"lstrip": false,
|
1128 |
+
"normalized": false,
|
1129 |
+
"rstrip": false,
|
1130 |
+
"single_word": false,
|
1131 |
+
"special": false
|
1132 |
+
},
|
1133 |
+
"141": {
|
1134 |
+
"content": "▁▁▁▁",
|
1135 |
+
"lstrip": false,
|
1136 |
+
"normalized": false,
|
1137 |
+
"rstrip": false,
|
1138 |
+
"single_word": false,
|
1139 |
+
"special": false
|
1140 |
+
},
|
1141 |
+
"142": {
|
1142 |
+
"content": "▁▁▁▁▁",
|
1143 |
+
"lstrip": false,
|
1144 |
+
"normalized": false,
|
1145 |
+
"rstrip": false,
|
1146 |
+
"single_word": false,
|
1147 |
+
"special": false
|
1148 |
+
},
|
1149 |
+
"143": {
|
1150 |
+
"content": "▁▁▁▁▁▁",
|
1151 |
+
"lstrip": false,
|
1152 |
+
"normalized": false,
|
1153 |
+
"rstrip": false,
|
1154 |
+
"single_word": false,
|
1155 |
+
"special": false
|
1156 |
+
},
|
1157 |
+
"144": {
|
1158 |
+
"content": "▁▁▁▁▁▁▁",
|
1159 |
+
"lstrip": false,
|
1160 |
+
"normalized": false,
|
1161 |
+
"rstrip": false,
|
1162 |
+
"single_word": false,
|
1163 |
+
"special": false
|
1164 |
+
},
|
1165 |
+
"145": {
|
1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
1167 |
+
"lstrip": false,
|
1168 |
+
"normalized": false,
|
1169 |
+
"rstrip": false,
|
1170 |
+
"single_word": false,
|
1171 |
+
"special": false
|
1172 |
+
},
|
1173 |
+
"146": {
|
1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
1175 |
+
"lstrip": false,
|
1176 |
+
"normalized": false,
|
1177 |
+
"rstrip": false,
|
1178 |
+
"single_word": false,
|
1179 |
+
"special": false
|
1180 |
+
},
|
1181 |
+
"147": {
|
1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
1183 |
+
"lstrip": false,
|
1184 |
+
"normalized": false,
|
1185 |
+
"rstrip": false,
|
1186 |
+
"single_word": false,
|
1187 |
+
"special": false
|
1188 |
+
},
|
1189 |
+
"148": {
|
1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
1191 |
+
"lstrip": false,
|
1192 |
+
"normalized": false,
|
1193 |
+
"rstrip": false,
|
1194 |
+
"single_word": false,
|
1195 |
+
"special": false
|
1196 |
+
},
|
1197 |
+
"149": {
|
1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
1199 |
+
"lstrip": false,
|
1200 |
+
"normalized": false,
|
1201 |
+
"rstrip": false,
|
1202 |
+
"single_word": false,
|
1203 |
+
"special": false
|
1204 |
+
},
|
1205 |
+
"150": {
|
1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1207 |
+
"lstrip": false,
|
1208 |
+
"normalized": false,
|
1209 |
+
"rstrip": false,
|
1210 |
+
"single_word": false,
|
1211 |
+
"special": false
|
1212 |
+
},
|
1213 |
+
"151": {
|
1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1215 |
+
"lstrip": false,
|
1216 |
+
"normalized": false,
|
1217 |
+
"rstrip": false,
|
1218 |
+
"single_word": false,
|
1219 |
+
"special": false
|
1220 |
+
},
|
1221 |
+
"152": {
|
1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1223 |
+
"lstrip": false,
|
1224 |
+
"normalized": false,
|
1225 |
+
"rstrip": false,
|
1226 |
+
"single_word": false,
|
1227 |
+
"special": false
|
1228 |
+
},
|
1229 |
+
"153": {
|
1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1231 |
+
"lstrip": false,
|
1232 |
+
"normalized": false,
|
1233 |
+
"rstrip": false,
|
1234 |
+
"single_word": false,
|
1235 |
+
"special": false
|
1236 |
+
},
|
1237 |
+
"154": {
|
1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1239 |
+
"lstrip": false,
|
1240 |
+
"normalized": false,
|
1241 |
+
"rstrip": false,
|
1242 |
+
"single_word": false,
|
1243 |
+
"special": false
|
1244 |
+
},
|
1245 |
+
"155": {
|
1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1247 |
+
"lstrip": false,
|
1248 |
+
"normalized": false,
|
1249 |
+
"rstrip": false,
|
1250 |
+
"single_word": false,
|
1251 |
+
"special": false
|
1252 |
+
},
|
1253 |
+
"156": {
|
1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1255 |
+
"lstrip": false,
|
1256 |
+
"normalized": false,
|
1257 |
+
"rstrip": false,
|
1258 |
+
"single_word": false,
|
1259 |
+
"special": false
|
1260 |
+
},
|
1261 |
+
"157": {
|
1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1263 |
+
"lstrip": false,
|
1264 |
+
"normalized": false,
|
1265 |
+
"rstrip": false,
|
1266 |
+
"single_word": false,
|
1267 |
+
"special": false
|
1268 |
+
},
|
1269 |
+
"158": {
|
1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1271 |
+
"lstrip": false,
|
1272 |
+
"normalized": false,
|
1273 |
+
"rstrip": false,
|
1274 |
+
"single_word": false,
|
1275 |
+
"special": false
|
1276 |
+
},
|
1277 |
+
"159": {
|
1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1279 |
+
"lstrip": false,
|
1280 |
+
"normalized": false,
|
1281 |
+
"rstrip": false,
|
1282 |
+
"single_word": false,
|
1283 |
+
"special": false
|
1284 |
+
},
|
1285 |
+
"160": {
|
1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1287 |
+
"lstrip": false,
|
1288 |
+
"normalized": false,
|
1289 |
+
"rstrip": false,
|
1290 |
+
"single_word": false,
|
1291 |
+
"special": false
|
1292 |
+
},
|
1293 |
+
"161": {
|
1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1295 |
+
"lstrip": false,
|
1296 |
+
"normalized": false,
|
1297 |
+
"rstrip": false,
|
1298 |
+
"single_word": false,
|
1299 |
+
"special": false
|
1300 |
+
},
|
1301 |
+
"162": {
|
1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1303 |
+
"lstrip": false,
|
1304 |
+
"normalized": false,
|
1305 |
+
"rstrip": false,
|
1306 |
+
"single_word": false,
|
1307 |
+
"special": false
|
1308 |
+
},
|
1309 |
+
"163": {
|
1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1311 |
+
"lstrip": false,
|
1312 |
+
"normalized": false,
|
1313 |
+
"rstrip": false,
|
1314 |
+
"single_word": false,
|
1315 |
+
"special": false
|
1316 |
+
},
|
1317 |
+
"164": {
|
1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1319 |
+
"lstrip": false,
|
1320 |
+
"normalized": false,
|
1321 |
+
"rstrip": false,
|
1322 |
+
"single_word": false,
|
1323 |
+
"special": false
|
1324 |
+
},
|
1325 |
+
"165": {
|
1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1327 |
+
"lstrip": false,
|
1328 |
+
"normalized": false,
|
1329 |
+
"rstrip": false,
|
1330 |
+
"single_word": false,
|
1331 |
+
"special": false
|
1332 |
+
},
|
1333 |
+
"166": {
|
1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1335 |
+
"lstrip": false,
|
1336 |
+
"normalized": false,
|
1337 |
+
"rstrip": false,
|
1338 |
+
"single_word": false,
|
1339 |
+
"special": false
|
1340 |
+
},
|
1341 |
+
"167": {
|
1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1343 |
+
"lstrip": false,
|
1344 |
+
"normalized": false,
|
1345 |
+
"rstrip": false,
|
1346 |
+
"single_word": false,
|
1347 |
+
"special": false
|
1348 |
+
},
|
1349 |
+
"168": {
|
1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1351 |
+
"lstrip": false,
|
1352 |
+
"normalized": false,
|
1353 |
+
"rstrip": false,
|
1354 |
+
"single_word": false,
|
1355 |
+
"special": false
|
1356 |
+
},
|
1357 |
+
"169": {
|
1358 |
+
"content": "<table>",
|
1359 |
+
"lstrip": false,
|
1360 |
+
"normalized": false,
|
1361 |
+
"rstrip": false,
|
1362 |
+
"single_word": false,
|
1363 |
+
"special": false
|
1364 |
+
},
|
1365 |
+
"170": {
|
1366 |
+
"content": "<caption>",
|
1367 |
+
"lstrip": false,
|
1368 |
+
"normalized": false,
|
1369 |
+
"rstrip": false,
|
1370 |
+
"single_word": false,
|
1371 |
+
"special": false
|
1372 |
+
},
|
1373 |
+
"171": {
|
1374 |
+
"content": "<thead>",
|
1375 |
+
"lstrip": false,
|
1376 |
+
"normalized": false,
|
1377 |
+
"rstrip": false,
|
1378 |
+
"single_word": false,
|
1379 |
+
"special": false
|
1380 |
+
},
|
1381 |
+
"172": {
|
1382 |
+
"content": "<tbody>",
|
1383 |
+
"lstrip": false,
|
1384 |
+
"normalized": false,
|
1385 |
+
"rstrip": false,
|
1386 |
+
"single_word": false,
|
1387 |
+
"special": false
|
1388 |
+
},
|
1389 |
+
"173": {
|
1390 |
+
"content": "<tfoot>",
|
1391 |
+
"lstrip": false,
|
1392 |
+
"normalized": false,
|
1393 |
+
"rstrip": false,
|
1394 |
+
"single_word": false,
|
1395 |
+
"special": false
|
1396 |
+
},
|
1397 |
+
"174": {
|
1398 |
+
"content": "<tr>",
|
1399 |
+
"lstrip": false,
|
1400 |
+
"normalized": false,
|
1401 |
+
"rstrip": false,
|
1402 |
+
"single_word": false,
|
1403 |
+
"special": false
|
1404 |
+
},
|
1405 |
+
"175": {
|
1406 |
+
"content": "<th>",
|
1407 |
+
"lstrip": false,
|
1408 |
+
"normalized": false,
|
1409 |
+
"rstrip": false,
|
1410 |
+
"single_word": false,
|
1411 |
+
"special": false
|
1412 |
+
},
|
1413 |
+
"176": {
|
1414 |
+
"content": "<td>",
|
1415 |
+
"lstrip": false,
|
1416 |
+
"normalized": false,
|
1417 |
+
"rstrip": false,
|
1418 |
+
"single_word": false,
|
1419 |
+
"special": false
|
1420 |
+
},
|
1421 |
+
"177": {
|
1422 |
+
"content": "</table>",
|
1423 |
+
"lstrip": false,
|
1424 |
+
"normalized": false,
|
1425 |
+
"rstrip": false,
|
1426 |
+
"single_word": false,
|
1427 |
+
"special": false
|
1428 |
+
},
|
1429 |
+
"178": {
|
1430 |
+
"content": "</caption>",
|
1431 |
+
"lstrip": false,
|
1432 |
+
"normalized": false,
|
1433 |
+
"rstrip": false,
|
1434 |
+
"single_word": false,
|
1435 |
+
"special": false
|
1436 |
+
},
|
1437 |
+
"179": {
|
1438 |
+
"content": "</thead>",
|
1439 |
+
"lstrip": false,
|
1440 |
+
"normalized": false,
|
1441 |
+
"rstrip": false,
|
1442 |
+
"single_word": false,
|
1443 |
+
"special": false
|
1444 |
+
},
|
1445 |
+
"180": {
|
1446 |
+
"content": "</tbody>",
|
1447 |
+
"lstrip": false,
|
1448 |
+
"normalized": false,
|
1449 |
+
"rstrip": false,
|
1450 |
+
"single_word": false,
|
1451 |
+
"special": false
|
1452 |
+
},
|
1453 |
+
"181": {
|
1454 |
+
"content": "</tfoot>",
|
1455 |
+
"lstrip": false,
|
1456 |
+
"normalized": false,
|
1457 |
+
"rstrip": false,
|
1458 |
+
"single_word": false,
|
1459 |
+
"special": false
|
1460 |
+
},
|
1461 |
+
"182": {
|
1462 |
+
"content": "</tr>",
|
1463 |
+
"lstrip": false,
|
1464 |
+
"normalized": false,
|
1465 |
+
"rstrip": false,
|
1466 |
+
"single_word": false,
|
1467 |
+
"special": false
|
1468 |
+
},
|
1469 |
+
"183": {
|
1470 |
+
"content": "</th>",
|
1471 |
+
"lstrip": false,
|
1472 |
+
"normalized": false,
|
1473 |
+
"rstrip": false,
|
1474 |
+
"single_word": false,
|
1475 |
+
"special": false
|
1476 |
+
},
|
1477 |
+
"184": {
|
1478 |
+
"content": "</td>",
|
1479 |
+
"lstrip": false,
|
1480 |
+
"normalized": false,
|
1481 |
+
"rstrip": false,
|
1482 |
+
"single_word": false,
|
1483 |
+
"special": false
|
1484 |
+
},
|
1485 |
+
"185": {
|
1486 |
+
"content": "<h1>",
|
1487 |
+
"lstrip": false,
|
1488 |
+
"normalized": false,
|
1489 |
+
"rstrip": false,
|
1490 |
+
"single_word": false,
|
1491 |
+
"special": false
|
1492 |
+
},
|
1493 |
+
"186": {
|
1494 |
+
"content": "<h2>",
|
1495 |
+
"lstrip": false,
|
1496 |
+
"normalized": false,
|
1497 |
+
"rstrip": false,
|
1498 |
+
"single_word": false,
|
1499 |
+
"special": false
|
1500 |
+
},
|
1501 |
+
"187": {
|
1502 |
+
"content": "<h3>",
|
1503 |
+
"lstrip": false,
|
1504 |
+
"normalized": false,
|
1505 |
+
"rstrip": false,
|
1506 |
+
"single_word": false,
|
1507 |
+
"special": false
|
1508 |
+
},
|
1509 |
+
"188": {
|
1510 |
+
"content": "<h4>",
|
1511 |
+
"lstrip": false,
|
1512 |
+
"normalized": false,
|
1513 |
+
"rstrip": false,
|
1514 |
+
"single_word": false,
|
1515 |
+
"special": false
|
1516 |
+
},
|
1517 |
+
"189": {
|
1518 |
+
"content": "<h5>",
|
1519 |
+
"lstrip": false,
|
1520 |
+
"normalized": false,
|
1521 |
+
"rstrip": false,
|
1522 |
+
"single_word": false,
|
1523 |
+
"special": false
|
1524 |
+
},
|
1525 |
+
"190": {
|
1526 |
+
"content": "<h6>",
|
1527 |
+
"lstrip": false,
|
1528 |
+
"normalized": false,
|
1529 |
+
"rstrip": false,
|
1530 |
+
"single_word": false,
|
1531 |
+
"special": false
|
1532 |
+
},
|
1533 |
+
"191": {
|
1534 |
+
"content": "<blockquote>",
|
1535 |
+
"lstrip": false,
|
1536 |
+
"normalized": false,
|
1537 |
+
"rstrip": false,
|
1538 |
+
"single_word": false,
|
1539 |
+
"special": false
|
1540 |
+
},
|
1541 |
+
"192": {
|
1542 |
+
"content": "</h1>",
|
1543 |
+
"lstrip": false,
|
1544 |
+
"normalized": false,
|
1545 |
+
"rstrip": false,
|
1546 |
+
"single_word": false,
|
1547 |
+
"special": false
|
1548 |
+
},
|
1549 |
+
"193": {
|
1550 |
+
"content": "</h2>",
|
1551 |
+
"lstrip": false,
|
1552 |
+
"normalized": false,
|
1553 |
+
"rstrip": false,
|
1554 |
+
"single_word": false,
|
1555 |
+
"special": false
|
1556 |
+
},
|
1557 |
+
"194": {
|
1558 |
+
"content": "</h3>",
|
1559 |
+
"lstrip": false,
|
1560 |
+
"normalized": false,
|
1561 |
+
"rstrip": false,
|
1562 |
+
"single_word": false,
|
1563 |
+
"special": false
|
1564 |
+
},
|
1565 |
+
"195": {
|
1566 |
+
"content": "</h4>",
|
1567 |
+
"lstrip": false,
|
1568 |
+
"normalized": false,
|
1569 |
+
"rstrip": false,
|
1570 |
+
"single_word": false,
|
1571 |
+
"special": false
|
1572 |
+
},
|
1573 |
+
"196": {
|
1574 |
+
"content": "</h5>",
|
1575 |
+
"lstrip": false,
|
1576 |
+
"normalized": false,
|
1577 |
+
"rstrip": false,
|
1578 |
+
"single_word": false,
|
1579 |
+
"special": false
|
1580 |
+
},
|
1581 |
+
"197": {
|
1582 |
+
"content": "</h6>",
|
1583 |
+
"lstrip": false,
|
1584 |
+
"normalized": false,
|
1585 |
+
"rstrip": false,
|
1586 |
+
"single_word": false,
|
1587 |
+
"special": false
|
1588 |
+
},
|
1589 |
+
"198": {
|
1590 |
+
"content": "</blockquote>",
|
1591 |
+
"lstrip": false,
|
1592 |
+
"normalized": false,
|
1593 |
+
"rstrip": false,
|
1594 |
+
"single_word": false,
|
1595 |
+
"special": false
|
1596 |
+
},
|
1597 |
+
"199": {
|
1598 |
+
"content": "<strong>",
|
1599 |
+
"lstrip": false,
|
1600 |
+
"normalized": false,
|
1601 |
+
"rstrip": false,
|
1602 |
+
"single_word": false,
|
1603 |
+
"special": false
|
1604 |
+
},
|
1605 |
+
"200": {
|
1606 |
+
"content": "<em>",
|
1607 |
+
"lstrip": false,
|
1608 |
+
"normalized": false,
|
1609 |
+
"rstrip": false,
|
1610 |
+
"single_word": false,
|
1611 |
+
"special": false
|
1612 |
+
},
|
1613 |
+
"201": {
|
1614 |
+
"content": "<b>",
|
1615 |
+
"lstrip": false,
|
1616 |
+
"normalized": false,
|
1617 |
+
"rstrip": false,
|
1618 |
+
"single_word": false,
|
1619 |
+
"special": false
|
1620 |
+
},
|
1621 |
+
"202": {
|
1622 |
+
"content": "<i>",
|
1623 |
+
"lstrip": false,
|
1624 |
+
"normalized": false,
|
1625 |
+
"rstrip": false,
|
1626 |
+
"single_word": false,
|
1627 |
+
"special": false
|
1628 |
+
},
|
1629 |
+
"203": {
|
1630 |
+
"content": "<u>",
|
1631 |
+
"lstrip": false,
|
1632 |
+
"normalized": false,
|
1633 |
+
"rstrip": false,
|
1634 |
+
"single_word": false,
|
1635 |
+
"special": false
|
1636 |
+
},
|
1637 |
+
"204": {
|
1638 |
+
"content": "<s>",
|
1639 |
+
"lstrip": false,
|
1640 |
+
"normalized": false,
|
1641 |
+
"rstrip": false,
|
1642 |
+
"single_word": false,
|
1643 |
+
"special": false
|
1644 |
+
},
|
1645 |
+
"205": {
|
1646 |
+
"content": "<sub>",
|
1647 |
+
"lstrip": false,
|
1648 |
+
"normalized": false,
|
1649 |
+
"rstrip": false,
|
1650 |
+
"single_word": false,
|
1651 |
+
"special": false
|
1652 |
+
},
|
1653 |
+
"206": {
|
1654 |
+
"content": "<sup>",
|
1655 |
+
"lstrip": false,
|
1656 |
+
"normalized": false,
|
1657 |
+
"rstrip": false,
|
1658 |
+
"single_word": false,
|
1659 |
+
"special": false
|
1660 |
+
},
|
1661 |
+
"207": {
|
1662 |
+
"content": "<code>",
|
1663 |
+
"lstrip": false,
|
1664 |
+
"normalized": false,
|
1665 |
+
"rstrip": false,
|
1666 |
+
"single_word": false,
|
1667 |
+
"special": false
|
1668 |
+
},
|
1669 |
+
"208": {
|
1670 |
+
"content": "</strong>",
|
1671 |
+
"lstrip": false,
|
1672 |
+
"normalized": false,
|
1673 |
+
"rstrip": false,
|
1674 |
+
"single_word": false,
|
1675 |
+
"special": false
|
1676 |
+
},
|
1677 |
+
"209": {
|
1678 |
+
"content": "</em>",
|
1679 |
+
"lstrip": false,
|
1680 |
+
"normalized": false,
|
1681 |
+
"rstrip": false,
|
1682 |
+
"single_word": false,
|
1683 |
+
"special": false
|
1684 |
+
},
|
1685 |
+
"210": {
|
1686 |
+
"content": "</b>",
|
1687 |
+
"lstrip": false,
|
1688 |
+
"normalized": false,
|
1689 |
+
"rstrip": false,
|
1690 |
+
"single_word": false,
|
1691 |
+
"special": false
|
1692 |
+
},
|
1693 |
+
"211": {
|
1694 |
+
"content": "</i>",
|
1695 |
+
"lstrip": false,
|
1696 |
+
"normalized": false,
|
1697 |
+
"rstrip": false,
|
1698 |
+
"single_word": false,
|
1699 |
+
"special": false
|
1700 |
+
},
|
1701 |
+
"212": {
|
1702 |
+
"content": "</u>",
|
1703 |
+
"lstrip": false,
|
1704 |
+
"normalized": false,
|
1705 |
+
"rstrip": false,
|
1706 |
+
"single_word": false,
|
1707 |
+
"special": false
|
1708 |
+
},
|
1709 |
+
"213": {
|
1710 |
+
"content": "</s>",
|
1711 |
+
"lstrip": false,
|
1712 |
+
"normalized": false,
|
1713 |
+
"rstrip": false,
|
1714 |
+
"single_word": false,
|
1715 |
+
"special": false
|
1716 |
+
},
|
1717 |
+
"214": {
|
1718 |
+
"content": "</sub>",
|
1719 |
+
"lstrip": false,
|
1720 |
+
"normalized": false,
|
1721 |
+
"rstrip": false,
|
1722 |
+
"single_word": false,
|
1723 |
+
"special": false
|
1724 |
+
},
|
1725 |
+
"215": {
|
1726 |
+
"content": "</sup>",
|
1727 |
+
"lstrip": false,
|
1728 |
+
"normalized": false,
|
1729 |
+
"rstrip": false,
|
1730 |
+
"single_word": false,
|
1731 |
+
"special": false
|
1732 |
+
},
|
1733 |
+
"216": {
|
1734 |
+
"content": "</code>",
|
1735 |
+
"lstrip": false,
|
1736 |
+
"normalized": false,
|
1737 |
+
"rstrip": false,
|
1738 |
+
"single_word": false,
|
1739 |
+
"special": false
|
1740 |
+
},
|
1741 |
+
"255968": {
|
1742 |
+
"content": "[toxicity=0]",
|
1743 |
+
"lstrip": false,
|
1744 |
+
"normalized": false,
|
1745 |
+
"rstrip": false,
|
1746 |
+
"single_word": false,
|
1747 |
+
"special": false
|
1748 |
+
},
|
1749 |
+
"255969": {
|
1750 |
+
"content": "\t\t",
|
1751 |
+
"lstrip": false,
|
1752 |
+
"normalized": false,
|
1753 |
+
"rstrip": false,
|
1754 |
+
"single_word": false,
|
1755 |
+
"special": false
|
1756 |
+
},
|
1757 |
+
"255970": {
|
1758 |
+
"content": "\t\t\t",
|
1759 |
+
"lstrip": false,
|
1760 |
+
"normalized": false,
|
1761 |
+
"rstrip": false,
|
1762 |
+
"single_word": false,
|
1763 |
+
"special": false
|
1764 |
+
},
|
1765 |
+
"255971": {
|
1766 |
+
"content": "\t\t\t\t",
|
1767 |
+
"lstrip": false,
|
1768 |
+
"normalized": false,
|
1769 |
+
"rstrip": false,
|
1770 |
+
"single_word": false,
|
1771 |
+
"special": false
|
1772 |
+
},
|
1773 |
+
"255972": {
|
1774 |
+
"content": "\t\t\t\t\t",
|
1775 |
+
"lstrip": false,
|
1776 |
+
"normalized": false,
|
1777 |
+
"rstrip": false,
|
1778 |
+
"single_word": false,
|
1779 |
+
"special": false
|
1780 |
+
},
|
1781 |
+
"255973": {
|
1782 |
+
"content": "\t\t\t\t\t\t",
|
1783 |
+
"lstrip": false,
|
1784 |
+
"normalized": false,
|
1785 |
+
"rstrip": false,
|
1786 |
+
"single_word": false,
|
1787 |
+
"special": false
|
1788 |
+
},
|
1789 |
+
"255974": {
|
1790 |
+
"content": "\t\t\t\t\t\t\t",
|
1791 |
+
"lstrip": false,
|
1792 |
+
"normalized": false,
|
1793 |
+
"rstrip": false,
|
1794 |
+
"single_word": false,
|
1795 |
+
"special": false
|
1796 |
+
},
|
1797 |
+
"255975": {
|
1798 |
+
"content": "\t\t\t\t\t\t\t\t",
|
1799 |
+
"lstrip": false,
|
1800 |
+
"normalized": false,
|
1801 |
+
"rstrip": false,
|
1802 |
+
"single_word": false,
|
1803 |
+
"special": false
|
1804 |
+
},
|
1805 |
+
"255976": {
|
1806 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
1807 |
+
"lstrip": false,
|
1808 |
+
"normalized": false,
|
1809 |
+
"rstrip": false,
|
1810 |
+
"single_word": false,
|
1811 |
+
"special": false
|
1812 |
+
},
|
1813 |
+
"255977": {
|
1814 |
+
"content": "\t\t\t\t\t\t\t\t\t\t",
|
1815 |
+
"lstrip": false,
|
1816 |
+
"normalized": false,
|
1817 |
+
"rstrip": false,
|
1818 |
+
"single_word": false,
|
1819 |
+
"special": false
|
1820 |
+
},
|
1821 |
+
"255978": {
|
1822 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t",
|
1823 |
+
"lstrip": false,
|
1824 |
+
"normalized": false,
|
1825 |
+
"rstrip": false,
|
1826 |
+
"single_word": false,
|
1827 |
+
"special": false
|
1828 |
+
},
|
1829 |
+
"255979": {
|
1830 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t",
|
1831 |
+
"lstrip": false,
|
1832 |
+
"normalized": false,
|
1833 |
+
"rstrip": false,
|
1834 |
+
"single_word": false,
|
1835 |
+
"special": false
|
1836 |
+
},
|
1837 |
+
"255980": {
|
1838 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1839 |
+
"lstrip": false,
|
1840 |
+
"normalized": false,
|
1841 |
+
"rstrip": false,
|
1842 |
+
"single_word": false,
|
1843 |
+
"special": false
|
1844 |
+
},
|
1845 |
+
"255981": {
|
1846 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1847 |
+
"lstrip": false,
|
1848 |
+
"normalized": false,
|
1849 |
+
"rstrip": false,
|
1850 |
+
"single_word": false,
|
1851 |
+
"special": false
|
1852 |
+
},
|
1853 |
+
"255982": {
|
1854 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1855 |
+
"lstrip": false,
|
1856 |
+
"normalized": false,
|
1857 |
+
"rstrip": false,
|
1858 |
+
"single_word": false,
|
1859 |
+
"special": false
|
1860 |
+
},
|
1861 |
+
"255983": {
|
1862 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1863 |
+
"lstrip": false,
|
1864 |
+
"normalized": false,
|
1865 |
+
"rstrip": false,
|
1866 |
+
"single_word": false,
|
1867 |
+
"special": false
|
1868 |
+
},
|
1869 |
+
"255984": {
|
1870 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1871 |
+
"lstrip": false,
|
1872 |
+
"normalized": false,
|
1873 |
+
"rstrip": false,
|
1874 |
+
"single_word": false,
|
1875 |
+
"special": false
|
1876 |
+
},
|
1877 |
+
"255985": {
|
1878 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1879 |
+
"lstrip": false,
|
1880 |
+
"normalized": false,
|
1881 |
+
"rstrip": false,
|
1882 |
+
"single_word": false,
|
1883 |
+
"special": false
|
1884 |
+
},
|
1885 |
+
"255986": {
|
1886 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1887 |
+
"lstrip": false,
|
1888 |
+
"normalized": false,
|
1889 |
+
"rstrip": false,
|
1890 |
+
"single_word": false,
|
1891 |
+
"special": false
|
1892 |
+
},
|
1893 |
+
"255987": {
|
1894 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1895 |
+
"lstrip": false,
|
1896 |
+
"normalized": false,
|
1897 |
+
"rstrip": false,
|
1898 |
+
"single_word": false,
|
1899 |
+
"special": false
|
1900 |
+
},
|
1901 |
+
"255988": {
|
1902 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1903 |
+
"lstrip": false,
|
1904 |
+
"normalized": false,
|
1905 |
+
"rstrip": false,
|
1906 |
+
"single_word": false,
|
1907 |
+
"special": false
|
1908 |
+
},
|
1909 |
+
"255989": {
|
1910 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1911 |
+
"lstrip": false,
|
1912 |
+
"normalized": false,
|
1913 |
+
"rstrip": false,
|
1914 |
+
"single_word": false,
|
1915 |
+
"special": false
|
1916 |
+
},
|
1917 |
+
"255990": {
|
1918 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1919 |
+
"lstrip": false,
|
1920 |
+
"normalized": false,
|
1921 |
+
"rstrip": false,
|
1922 |
+
"single_word": false,
|
1923 |
+
"special": false
|
1924 |
+
},
|
1925 |
+
"255991": {
|
1926 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1927 |
+
"lstrip": false,
|
1928 |
+
"normalized": false,
|
1929 |
+
"rstrip": false,
|
1930 |
+
"single_word": false,
|
1931 |
+
"special": false
|
1932 |
+
},
|
1933 |
+
"255992": {
|
1934 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1935 |
+
"lstrip": false,
|
1936 |
+
"normalized": false,
|
1937 |
+
"rstrip": false,
|
1938 |
+
"single_word": false,
|
1939 |
+
"special": false
|
1940 |
+
},
|
1941 |
+
"255993": {
|
1942 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1943 |
+
"lstrip": false,
|
1944 |
+
"normalized": false,
|
1945 |
+
"rstrip": false,
|
1946 |
+
"single_word": false,
|
1947 |
+
"special": false
|
1948 |
+
},
|
1949 |
+
"255994": {
|
1950 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1951 |
+
"lstrip": false,
|
1952 |
+
"normalized": false,
|
1953 |
+
"rstrip": false,
|
1954 |
+
"single_word": false,
|
1955 |
+
"special": false
|
1956 |
+
},
|
1957 |
+
"255995": {
|
1958 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1959 |
+
"lstrip": false,
|
1960 |
+
"normalized": false,
|
1961 |
+
"rstrip": false,
|
1962 |
+
"single_word": false,
|
1963 |
+
"special": false
|
1964 |
+
},
|
1965 |
+
"255996": {
|
1966 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1967 |
+
"lstrip": false,
|
1968 |
+
"normalized": false,
|
1969 |
+
"rstrip": false,
|
1970 |
+
"single_word": false,
|
1971 |
+
"special": false
|
1972 |
+
},
|
1973 |
+
"255997": {
|
1974 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1975 |
+
"lstrip": false,
|
1976 |
+
"normalized": false,
|
1977 |
+
"rstrip": false,
|
1978 |
+
"single_word": false,
|
1979 |
+
"special": false
|
1980 |
+
},
|
1981 |
+
"255998": {
|
1982 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1983 |
+
"lstrip": false,
|
1984 |
+
"normalized": false,
|
1985 |
+
"rstrip": false,
|
1986 |
+
"single_word": false,
|
1987 |
+
"special": false
|
1988 |
+
},
|
1989 |
+
"255999": {
|
1990 |
+
"content": "<unused99>",
|
1991 |
+
"lstrip": false,
|
1992 |
+
"normalized": false,
|
1993 |
+
"rstrip": false,
|
1994 |
+
"single_word": false,
|
1995 |
+
"special": false
|
1996 |
+
}
|
1997 |
+
},
|
1998 |
+
"additional_special_tokens": [
|
1999 |
+
"<start_of_turn>",
|
2000 |
+
"<end_of_turn>"
|
2001 |
+
],
|
2002 |
+
"bos_token": "<bos>",
|
2003 |
+
"chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
|
2004 |
+
"clean_up_tokenization_spaces": false,
|
2005 |
+
"eos_token": "<eos>",
|
2006 |
+
"model_max_length": 1000000000000000019884624838656,
|
2007 |
+
"pad_token": "<pad>",
|
2008 |
+
"sp_model_kwargs": {},
|
2009 |
+
"spaces_between_special_tokens": false,
|
2010 |
+
"tokenizer_class": "GemmaTokenizer",
|
2011 |
+
"unk_token": "<unk>",
|
2012 |
+
"use_default_system_prompt": false
|
2013 |
+
}
|