PushkarA07 commited on
Commit
7c15eac
1 Parent(s): 4de757a

End of training

Browse files
Files changed (4) hide show
  1. README.md +510 -195
  2. config.json +78 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,514 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: other
4
+ base_model: PushkarA07/segformer-b0-finetuned-batch2-30nov
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: segformer-b0-finetuned-batch2-10Dec
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # segformer-b0-finetuned-batch2-10Dec
18
+
19
+ This model is a fine-tuned version of [PushkarA07/segformer-b0-finetuned-batch2-30nov](https://huggingface.co/PushkarA07/segformer-b0-finetuned-batch2-30nov) on the PushkarA07/batch2-tiles dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0067
22
+ - Mean Iou: 0.7531
23
+ - Mean Accuracy: 0.8107
24
+ - Overall Accuracy: 0.9967
25
+ - Accuracy Abnormality: 0.6226
26
+ - Iou Abnormality: 0.5094
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 6e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 100
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Abnormality | Iou Abnormality |
56
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------:|:---------------:|
57
+ | 0.0044 | 0.2222 | 10 | 0.0088 | 0.7403 | 0.8049 | 0.9965 | 0.6112 | 0.4841 |
58
+ | 0.0092 | 0.4444 | 20 | 0.0084 | 0.7364 | 0.7859 | 0.9966 | 0.5729 | 0.4762 |
59
+ | 0.0044 | 0.6667 | 30 | 0.0090 | 0.7433 | 0.8068 | 0.9965 | 0.6149 | 0.4901 |
60
+ | 0.0045 | 0.8889 | 40 | 0.0082 | 0.7409 | 0.7978 | 0.9966 | 0.5968 | 0.4852 |
61
+ | 0.0042 | 1.1111 | 50 | 0.0079 | 0.7331 | 0.7698 | 0.9967 | 0.5405 | 0.4695 |
62
+ | 0.004 | 1.3333 | 60 | 0.0081 | 0.7355 | 0.7779 | 0.9966 | 0.5568 | 0.4744 |
63
+ | 0.0074 | 1.5556 | 70 | 0.0088 | 0.7441 | 0.8385 | 0.9962 | 0.6790 | 0.4921 |
64
+ | 0.0032 | 1.7778 | 80 | 0.0078 | 0.7387 | 0.7857 | 0.9966 | 0.5724 | 0.4807 |
65
+ | 0.0056 | 2.0 | 90 | 0.0081 | 0.7438 | 0.8055 | 0.9965 | 0.6123 | 0.4911 |
66
+ | 0.0061 | 2.2222 | 100 | 0.0079 | 0.7386 | 0.7849 | 0.9966 | 0.5707 | 0.4806 |
67
+ | 0.0131 | 2.4444 | 110 | 0.0079 | 0.7414 | 0.7960 | 0.9966 | 0.5931 | 0.4863 |
68
+ | 0.0047 | 2.6667 | 120 | 0.0078 | 0.7369 | 0.7799 | 0.9967 | 0.5607 | 0.4772 |
69
+ | 0.0046 | 2.8889 | 130 | 0.0078 | 0.7400 | 0.7882 | 0.9966 | 0.5774 | 0.4834 |
70
+ | 0.0125 | 3.1111 | 140 | 0.0080 | 0.7465 | 0.8196 | 0.9965 | 0.6408 | 0.4966 |
71
+ | 0.0019 | 3.3333 | 150 | 0.0078 | 0.7443 | 0.8019 | 0.9966 | 0.6050 | 0.4920 |
72
+ | 0.0058 | 3.5556 | 160 | 0.0078 | 0.7414 | 0.7905 | 0.9966 | 0.5820 | 0.4862 |
73
+ | 0.0055 | 3.7778 | 170 | 0.0079 | 0.7450 | 0.8101 | 0.9965 | 0.6217 | 0.4934 |
74
+ | 0.0109 | 4.0 | 180 | 0.0076 | 0.7429 | 0.7954 | 0.9966 | 0.5919 | 0.4892 |
75
+ | 0.0142 | 4.2222 | 190 | 0.0076 | 0.7419 | 0.7906 | 0.9967 | 0.5822 | 0.4871 |
76
+ | 0.0071 | 4.4444 | 200 | 0.0077 | 0.7438 | 0.7964 | 0.9966 | 0.5940 | 0.4909 |
77
+ | 0.0031 | 4.6667 | 210 | 0.0078 | 0.7449 | 0.8047 | 0.9966 | 0.6108 | 0.4931 |
78
+ | 0.0079 | 4.8889 | 220 | 0.0078 | 0.7455 | 0.8117 | 0.9965 | 0.6248 | 0.4944 |
79
+ | 0.0028 | 5.1111 | 230 | 0.0075 | 0.7413 | 0.7890 | 0.9967 | 0.5790 | 0.4859 |
80
+ | 0.0049 | 5.3333 | 240 | 0.0075 | 0.7414 | 0.7875 | 0.9967 | 0.5760 | 0.4861 |
81
+ | 0.0087 | 5.5556 | 250 | 0.0076 | 0.7448 | 0.8025 | 0.9966 | 0.6062 | 0.4929 |
82
+ | 0.0019 | 5.7778 | 260 | 0.0077 | 0.7466 | 0.8144 | 0.9965 | 0.6303 | 0.4967 |
83
+ | 0.0085 | 6.0 | 270 | 0.0076 | 0.7437 | 0.7964 | 0.9966 | 0.5940 | 0.4907 |
84
+ | 0.0058 | 6.2222 | 280 | 0.0076 | 0.7454 | 0.8042 | 0.9966 | 0.6098 | 0.4942 |
85
+ | 0.0066 | 6.4444 | 290 | 0.0076 | 0.7462 | 0.8068 | 0.9966 | 0.6149 | 0.4959 |
86
+ | 0.0098 | 6.6667 | 300 | 0.0075 | 0.7433 | 0.7922 | 0.9967 | 0.5855 | 0.4900 |
87
+ | 0.0031 | 6.8889 | 310 | 0.0076 | 0.7364 | 0.7759 | 0.9967 | 0.5526 | 0.4761 |
88
+ | 0.0083 | 7.1111 | 320 | 0.0076 | 0.7469 | 0.8115 | 0.9966 | 0.6244 | 0.4973 |
89
+ | 0.0003 | 7.3333 | 330 | 0.0075 | 0.7453 | 0.7992 | 0.9967 | 0.5997 | 0.4939 |
90
+ | 0.0156 | 7.5556 | 340 | 0.0075 | 0.7445 | 0.7971 | 0.9967 | 0.5954 | 0.4924 |
91
+ | 0.0136 | 7.7778 | 350 | 0.0074 | 0.7388 | 0.7782 | 0.9967 | 0.5572 | 0.4809 |
92
+ | 0.0043 | 8.0 | 360 | 0.0074 | 0.7457 | 0.8018 | 0.9966 | 0.6047 | 0.4948 |
93
+ | 0.0041 | 8.2222 | 370 | 0.0074 | 0.7439 | 0.7946 | 0.9967 | 0.5903 | 0.4911 |
94
+ | 0.0079 | 8.4444 | 380 | 0.0074 | 0.7462 | 0.8027 | 0.9966 | 0.6066 | 0.4958 |
95
+ | 0.008 | 8.6667 | 390 | 0.0074 | 0.7475 | 0.8097 | 0.9966 | 0.6207 | 0.4984 |
96
+ | 0.0088 | 8.8889 | 400 | 0.0074 | 0.7403 | 0.7840 | 0.9967 | 0.5689 | 0.4840 |
97
+ | 0.0052 | 9.1111 | 410 | 0.0074 | 0.7438 | 0.7942 | 0.9967 | 0.5896 | 0.4910 |
98
+ | 0.0068 | 9.3333 | 420 | 0.0075 | 0.7475 | 0.8129 | 0.9966 | 0.6273 | 0.4985 |
99
+ | 0.0032 | 9.5556 | 430 | 0.0074 | 0.7459 | 0.8021 | 0.9966 | 0.6053 | 0.4952 |
100
+ | 0.0079 | 9.7778 | 440 | 0.0074 | 0.7427 | 0.7888 | 0.9967 | 0.5786 | 0.4886 |
101
+ | 0.0102 | 10.0 | 450 | 0.0074 | 0.7441 | 0.7946 | 0.9967 | 0.5902 | 0.4915 |
102
+ | 0.018 | 10.2222 | 460 | 0.0074 | 0.7435 | 0.7943 | 0.9967 | 0.5897 | 0.4903 |
103
+ | 0.007 | 10.4444 | 470 | 0.0075 | 0.7462 | 0.8034 | 0.9966 | 0.6081 | 0.4957 |
104
+ | 0.0103 | 10.6667 | 480 | 0.0073 | 0.7432 | 0.7916 | 0.9967 | 0.5844 | 0.4897 |
105
+ | 0.0056 | 10.8889 | 490 | 0.0073 | 0.7451 | 0.7983 | 0.9967 | 0.5977 | 0.4935 |
106
+ | 0.0041 | 11.1111 | 500 | 0.0073 | 0.7441 | 0.7934 | 0.9967 | 0.5878 | 0.4914 |
107
+ | 0.0044 | 11.3333 | 510 | 0.0074 | 0.7484 | 0.8112 | 0.9966 | 0.6238 | 0.5002 |
108
+ | 0.0078 | 11.5556 | 520 | 0.0073 | 0.7470 | 0.8034 | 0.9967 | 0.6080 | 0.4973 |
109
+ | 0.006 | 11.7778 | 530 | 0.0073 | 0.7447 | 0.7953 | 0.9967 | 0.5916 | 0.4927 |
110
+ | 0.0064 | 12.0 | 540 | 0.0073 | 0.7455 | 0.8003 | 0.9966 | 0.6018 | 0.4944 |
111
+ | 0.0085 | 12.2222 | 550 | 0.0073 | 0.7450 | 0.7990 | 0.9966 | 0.5991 | 0.4934 |
112
+ | 0.0022 | 12.4444 | 560 | 0.0073 | 0.7473 | 0.8079 | 0.9966 | 0.6171 | 0.4980 |
113
+ | 0.0099 | 12.6667 | 570 | 0.0073 | 0.7458 | 0.8006 | 0.9967 | 0.6023 | 0.4949 |
114
+ | 0.0075 | 12.8889 | 580 | 0.0073 | 0.7443 | 0.7935 | 0.9967 | 0.5880 | 0.4919 |
115
+ | 0.0051 | 13.1111 | 590 | 0.0073 | 0.7444 | 0.7923 | 0.9967 | 0.5857 | 0.4921 |
116
+ | 0.0043 | 13.3333 | 600 | 0.0072 | 0.7471 | 0.8043 | 0.9966 | 0.6099 | 0.4975 |
117
+ | 0.0037 | 13.5556 | 610 | 0.0072 | 0.7457 | 0.7969 | 0.9967 | 0.5950 | 0.4947 |
118
+ | 0.0087 | 13.7778 | 620 | 0.0072 | 0.7414 | 0.7841 | 0.9967 | 0.5691 | 0.4860 |
119
+ | 0.0039 | 14.0 | 630 | 0.0073 | 0.7468 | 0.8043 | 0.9966 | 0.6099 | 0.4970 |
120
+ | 0.0115 | 14.2222 | 640 | 0.0072 | 0.7449 | 0.7938 | 0.9967 | 0.5887 | 0.4931 |
121
+ | 0.0213 | 14.4444 | 650 | 0.0072 | 0.7454 | 0.7953 | 0.9967 | 0.5917 | 0.4941 |
122
+ | 0.0054 | 14.6667 | 660 | 0.0072 | 0.7462 | 0.8000 | 0.9967 | 0.6011 | 0.4958 |
123
+ | 0.0026 | 14.8889 | 670 | 0.0072 | 0.7475 | 0.8032 | 0.9967 | 0.6076 | 0.4983 |
124
+ | 0.0132 | 15.1111 | 680 | 0.0071 | 0.7452 | 0.7944 | 0.9967 | 0.5899 | 0.4937 |
125
+ | 0.0025 | 15.3333 | 690 | 0.0072 | 0.7453 | 0.7942 | 0.9967 | 0.5895 | 0.4939 |
126
+ | 0.0099 | 15.5556 | 700 | 0.0072 | 0.7479 | 0.8044 | 0.9967 | 0.6101 | 0.4992 |
127
+ | 0.008 | 15.7778 | 710 | 0.0072 | 0.7468 | 0.8017 | 0.9967 | 0.6046 | 0.4969 |
128
+ | 0.0041 | 16.0 | 720 | 0.0072 | 0.7473 | 0.8043 | 0.9967 | 0.6098 | 0.4980 |
129
+ | 0.0144 | 16.2222 | 730 | 0.0073 | 0.7476 | 0.8033 | 0.9967 | 0.6078 | 0.4985 |
130
+ | 0.0019 | 16.4444 | 740 | 0.0072 | 0.7486 | 0.8087 | 0.9966 | 0.6188 | 0.5005 |
131
+ | 0.0036 | 16.6667 | 750 | 0.0072 | 0.7450 | 0.7943 | 0.9967 | 0.5897 | 0.4933 |
132
+ | 0.0008 | 16.8889 | 760 | 0.0071 | 0.7463 | 0.7980 | 0.9967 | 0.5971 | 0.4958 |
133
+ | 0.0166 | 17.1111 | 770 | 0.0072 | 0.7491 | 0.8114 | 0.9966 | 0.6242 | 0.5016 |
134
+ | 0.0036 | 17.3333 | 780 | 0.0071 | 0.7439 | 0.7896 | 0.9967 | 0.5802 | 0.4912 |
135
+ | 0.0057 | 17.5556 | 790 | 0.0071 | 0.7468 | 0.7984 | 0.9967 | 0.5979 | 0.4969 |
136
+ | 0.0059 | 17.7778 | 800 | 0.0071 | 0.7475 | 0.8035 | 0.9967 | 0.6083 | 0.4983 |
137
+ | 0.0067 | 18.0 | 810 | 0.0071 | 0.7483 | 0.8049 | 0.9967 | 0.6109 | 0.4999 |
138
+ | 0.0035 | 18.2222 | 820 | 0.0071 | 0.7481 | 0.8018 | 0.9967 | 0.6048 | 0.4994 |
139
+ | 0.0039 | 18.4444 | 830 | 0.0070 | 0.7486 | 0.8046 | 0.9967 | 0.6104 | 0.5005 |
140
+ | 0.005 | 18.6667 | 840 | 0.0071 | 0.7505 | 0.8134 | 0.9966 | 0.6282 | 0.5044 |
141
+ | 0.0047 | 18.8889 | 850 | 0.0071 | 0.7436 | 0.7867 | 0.9967 | 0.5744 | 0.4904 |
142
+ | 0.0018 | 19.1111 | 860 | 0.0071 | 0.7486 | 0.8050 | 0.9967 | 0.6112 | 0.5006 |
143
+ | 0.0039 | 19.3333 | 870 | 0.0070 | 0.7471 | 0.7976 | 0.9967 | 0.5964 | 0.4974 |
144
+ | 0.0061 | 19.5556 | 880 | 0.0071 | 0.7466 | 0.7966 | 0.9967 | 0.5943 | 0.4966 |
145
+ | 0.0079 | 19.7778 | 890 | 0.0070 | 0.7468 | 0.7971 | 0.9967 | 0.5953 | 0.4969 |
146
+ | 0.008 | 20.0 | 900 | 0.0070 | 0.7483 | 0.8023 | 0.9967 | 0.6058 | 0.5000 |
147
+ | 0.0027 | 20.2222 | 910 | 0.0070 | 0.7482 | 0.8022 | 0.9967 | 0.6057 | 0.4997 |
148
+ | 0.0073 | 20.4444 | 920 | 0.0070 | 0.7459 | 0.7950 | 0.9967 | 0.5911 | 0.4951 |
149
+ | 0.0043 | 20.6667 | 930 | 0.0070 | 0.7482 | 0.8031 | 0.9967 | 0.6074 | 0.4996 |
150
+ | 0.0027 | 20.8889 | 940 | 0.0070 | 0.7480 | 0.8013 | 0.9967 | 0.6038 | 0.4993 |
151
+ | 0.0085 | 21.1111 | 950 | 0.0071 | 0.7493 | 0.8076 | 0.9967 | 0.6164 | 0.5020 |
152
+ | 0.0054 | 21.3333 | 960 | 0.0071 | 0.7489 | 0.8072 | 0.9967 | 0.6157 | 0.5012 |
153
+ | 0.0087 | 21.5556 | 970 | 0.0071 | 0.7436 | 0.7870 | 0.9967 | 0.5749 | 0.4905 |
154
+ | 0.0025 | 21.7778 | 980 | 0.0070 | 0.7477 | 0.7993 | 0.9967 | 0.5997 | 0.4986 |
155
+ | 0.0167 | 22.0 | 990 | 0.0070 | 0.7459 | 0.7922 | 0.9967 | 0.5854 | 0.4951 |
156
+ | 0.0033 | 22.2222 | 1000 | 0.0070 | 0.7477 | 0.7998 | 0.9967 | 0.6006 | 0.4987 |
157
+ | 0.0043 | 22.4444 | 1010 | 0.0070 | 0.7496 | 0.8083 | 0.9967 | 0.6178 | 0.5025 |
158
+ | 0.003 | 22.6667 | 1020 | 0.0070 | 0.7481 | 0.8005 | 0.9967 | 0.6021 | 0.4996 |
159
+ | 0.0036 | 22.8889 | 1030 | 0.0070 | 0.7494 | 0.8066 | 0.9967 | 0.6144 | 0.5021 |
160
+ | 0.0158 | 23.1111 | 1040 | 0.0070 | 0.7439 | 0.7870 | 0.9968 | 0.5750 | 0.4910 |
161
+ | 0.0021 | 23.3333 | 1050 | 0.0070 | 0.7456 | 0.7942 | 0.9967 | 0.5894 | 0.4946 |
162
+ | 0.0222 | 23.5556 | 1060 | 0.0070 | 0.7454 | 0.7921 | 0.9967 | 0.5852 | 0.4940 |
163
+ | 0.0042 | 23.7778 | 1070 | 0.0071 | 0.7458 | 0.7924 | 0.9967 | 0.5858 | 0.4949 |
164
+ | 0.0032 | 24.0 | 1080 | 0.0071 | 0.7518 | 0.8222 | 0.9966 | 0.6459 | 0.5070 |
165
+ | 0.0047 | 24.2222 | 1090 | 0.0071 | 0.7443 | 0.7896 | 0.9967 | 0.5802 | 0.4919 |
166
+ | 0.0095 | 24.4444 | 1100 | 0.0070 | 0.7477 | 0.8012 | 0.9967 | 0.6035 | 0.4987 |
167
+ | 0.0065 | 24.6667 | 1110 | 0.0071 | 0.7509 | 0.8162 | 0.9966 | 0.6338 | 0.5052 |
168
+ | 0.0058 | 24.8889 | 1120 | 0.0070 | 0.7474 | 0.7992 | 0.9967 | 0.5994 | 0.4981 |
169
+ | 0.0055 | 25.1111 | 1130 | 0.0070 | 0.7473 | 0.7983 | 0.9967 | 0.5976 | 0.4978 |
170
+ | 0.0013 | 25.3333 | 1140 | 0.0070 | 0.7493 | 0.8057 | 0.9967 | 0.6126 | 0.5020 |
171
+ | 0.0055 | 25.5556 | 1150 | 0.0070 | 0.7455 | 0.7922 | 0.9967 | 0.5855 | 0.4944 |
172
+ | 0.0064 | 25.7778 | 1160 | 0.0070 | 0.7506 | 0.8112 | 0.9967 | 0.6237 | 0.5045 |
173
+ | 0.0045 | 26.0 | 1170 | 0.0070 | 0.7473 | 0.7984 | 0.9967 | 0.5978 | 0.4978 |
174
+ | 0.0075 | 26.2222 | 1180 | 0.0069 | 0.7491 | 0.8033 | 0.9967 | 0.6077 | 0.5015 |
175
+ | 0.0087 | 26.4444 | 1190 | 0.0069 | 0.7500 | 0.8081 | 0.9967 | 0.6173 | 0.5034 |
176
+ | 0.0049 | 26.6667 | 1200 | 0.0070 | 0.7477 | 0.7990 | 0.9967 | 0.5992 | 0.4988 |
177
+ | 0.0154 | 26.8889 | 1210 | 0.0069 | 0.7458 | 0.7920 | 0.9967 | 0.5851 | 0.4948 |
178
+ | 0.0098 | 27.1111 | 1220 | 0.0070 | 0.7501 | 0.8095 | 0.9967 | 0.6203 | 0.5036 |
179
+ | 0.0034 | 27.3333 | 1230 | 0.0069 | 0.7484 | 0.7994 | 0.9967 | 0.5999 | 0.5000 |
180
+ | 0.0062 | 27.5556 | 1240 | 0.0069 | 0.7475 | 0.7971 | 0.9967 | 0.5953 | 0.4983 |
181
+ | 0.0086 | 27.7778 | 1250 | 0.0069 | 0.7500 | 0.8043 | 0.9967 | 0.6098 | 0.5033 |
182
+ | 0.009 | 28.0 | 1260 | 0.0069 | 0.7464 | 0.7945 | 0.9967 | 0.5900 | 0.4961 |
183
+ | 0.0058 | 28.2222 | 1270 | 0.0070 | 0.7455 | 0.7928 | 0.9967 | 0.5867 | 0.4942 |
184
+ | 0.0029 | 28.4444 | 1280 | 0.0069 | 0.7484 | 0.8027 | 0.9967 | 0.6065 | 0.5002 |
185
+ | 0.0098 | 28.6667 | 1290 | 0.0069 | 0.7477 | 0.7980 | 0.9967 | 0.5971 | 0.4986 |
186
+ | 0.0063 | 28.8889 | 1300 | 0.0069 | 0.7507 | 0.8085 | 0.9967 | 0.6183 | 0.5048 |
187
+ | 0.0044 | 29.1111 | 1310 | 0.0070 | 0.7522 | 0.8186 | 0.9966 | 0.6386 | 0.5079 |
188
+ | 0.0048 | 29.3333 | 1320 | 0.0070 | 0.7430 | 0.7836 | 0.9968 | 0.5681 | 0.4892 |
189
+ | 0.005 | 29.5556 | 1330 | 0.0070 | 0.7513 | 0.8149 | 0.9966 | 0.6312 | 0.5060 |
190
+ | 0.0032 | 29.7778 | 1340 | 0.0069 | 0.7446 | 0.7881 | 0.9968 | 0.5771 | 0.4924 |
191
+ | 0.0064 | 30.0 | 1350 | 0.0070 | 0.7479 | 0.7994 | 0.9967 | 0.5999 | 0.4990 |
192
+ | 0.006 | 30.2222 | 1360 | 0.0070 | 0.7501 | 0.8050 | 0.9967 | 0.6113 | 0.5034 |
193
+ | 0.0038 | 30.4444 | 1370 | 0.0069 | 0.7504 | 0.8065 | 0.9967 | 0.6142 | 0.5041 |
194
+ | 0.0054 | 30.6667 | 1380 | 0.0069 | 0.7493 | 0.8014 | 0.9967 | 0.6040 | 0.5018 |
195
+ | 0.0053 | 30.8889 | 1390 | 0.0070 | 0.7448 | 0.7906 | 0.9967 | 0.5822 | 0.4928 |
196
+ | 0.002 | 31.1111 | 1400 | 0.0069 | 0.7503 | 0.8078 | 0.9967 | 0.6169 | 0.5039 |
197
+ | 0.0027 | 31.3333 | 1410 | 0.0070 | 0.7467 | 0.7961 | 0.9967 | 0.5933 | 0.4966 |
198
+ | 0.0027 | 31.5556 | 1420 | 0.0069 | 0.7482 | 0.7988 | 0.9967 | 0.5987 | 0.4996 |
199
+ | 0.008 | 31.7778 | 1430 | 0.0069 | 0.7488 | 0.8010 | 0.9967 | 0.6030 | 0.5009 |
200
+ | 0.004 | 32.0 | 1440 | 0.0069 | 0.7483 | 0.7992 | 0.9967 | 0.5995 | 0.4999 |
201
+ | 0.0048 | 32.2222 | 1450 | 0.0069 | 0.7497 | 0.8040 | 0.9967 | 0.6092 | 0.5028 |
202
+ | 0.0039 | 32.4444 | 1460 | 0.0069 | 0.7518 | 0.8141 | 0.9967 | 0.6296 | 0.5069 |
203
+ | 0.0046 | 32.6667 | 1470 | 0.0069 | 0.7499 | 0.8061 | 0.9967 | 0.6135 | 0.5032 |
204
+ | 0.0046 | 32.8889 | 1480 | 0.0069 | 0.7476 | 0.7961 | 0.9967 | 0.5932 | 0.4985 |
205
+ | 0.013 | 33.1111 | 1490 | 0.0069 | 0.7507 | 0.8083 | 0.9967 | 0.6179 | 0.5047 |
206
+ | 0.018 | 33.3333 | 1500 | 0.0070 | 0.7448 | 0.7897 | 0.9967 | 0.5804 | 0.4928 |
207
+ | 0.0068 | 33.5556 | 1510 | 0.0069 | 0.7492 | 0.8036 | 0.9967 | 0.6084 | 0.5017 |
208
+ | 0.0108 | 33.7778 | 1520 | 0.0069 | 0.7514 | 0.8108 | 0.9967 | 0.6229 | 0.5061 |
209
+ | 0.0055 | 34.0 | 1530 | 0.0069 | 0.7486 | 0.7993 | 0.9967 | 0.5997 | 0.5004 |
210
+ | 0.0084 | 34.2222 | 1540 | 0.0069 | 0.7524 | 0.8152 | 0.9967 | 0.6317 | 0.5081 |
211
+ | 0.0037 | 34.4444 | 1550 | 0.0069 | 0.7500 | 0.8049 | 0.9967 | 0.6110 | 0.5034 |
212
+ | 0.0048 | 34.6667 | 1560 | 0.0069 | 0.7502 | 0.8049 | 0.9967 | 0.6110 | 0.5036 |
213
+ | 0.0047 | 34.8889 | 1570 | 0.0069 | 0.7499 | 0.8028 | 0.9967 | 0.6068 | 0.5032 |
214
+ | 0.0139 | 35.1111 | 1580 | 0.0069 | 0.7496 | 0.8023 | 0.9967 | 0.6058 | 0.5024 |
215
+ | 0.0024 | 35.3333 | 1590 | 0.0068 | 0.7496 | 0.8018 | 0.9967 | 0.6046 | 0.5025 |
216
+ | 0.0043 | 35.5556 | 1600 | 0.0068 | 0.7511 | 0.8079 | 0.9967 | 0.6171 | 0.5056 |
217
+ | 0.0024 | 35.7778 | 1610 | 0.0069 | 0.7475 | 0.7951 | 0.9968 | 0.5912 | 0.4982 |
218
+ | 0.0027 | 36.0 | 1620 | 0.0069 | 0.7524 | 0.8145 | 0.9967 | 0.6304 | 0.5082 |
219
+ | 0.0052 | 36.2222 | 1630 | 0.0068 | 0.7494 | 0.8007 | 0.9967 | 0.6026 | 0.5020 |
220
+ | 0.009 | 36.4444 | 1640 | 0.0069 | 0.7477 | 0.7971 | 0.9967 | 0.5953 | 0.4987 |
221
+ | 0.0037 | 36.6667 | 1650 | 0.0069 | 0.7479 | 0.7977 | 0.9967 | 0.5964 | 0.4991 |
222
+ | 0.0097 | 36.8889 | 1660 | 0.0069 | 0.7528 | 0.8175 | 0.9967 | 0.6364 | 0.5090 |
223
+ | 0.0006 | 37.1111 | 1670 | 0.0069 | 0.7498 | 0.8048 | 0.9967 | 0.6109 | 0.5029 |
224
+ | 0.0091 | 37.3333 | 1680 | 0.0069 | 0.7475 | 0.7949 | 0.9968 | 0.5908 | 0.4983 |
225
+ | 0.0069 | 37.5556 | 1690 | 0.0068 | 0.7500 | 0.8027 | 0.9967 | 0.6065 | 0.5032 |
226
+ | 0.0035 | 37.7778 | 1700 | 0.0068 | 0.7499 | 0.8026 | 0.9967 | 0.6064 | 0.5030 |
227
+ | 0.0075 | 38.0 | 1710 | 0.0068 | 0.7475 | 0.7949 | 0.9968 | 0.5908 | 0.4983 |
228
+ | 0.002 | 38.2222 | 1720 | 0.0069 | 0.7497 | 0.8024 | 0.9967 | 0.6060 | 0.5027 |
229
+ | 0.0048 | 38.4444 | 1730 | 0.0068 | 0.7500 | 0.8037 | 0.9967 | 0.6086 | 0.5032 |
230
+ | 0.0172 | 38.6667 | 1740 | 0.0069 | 0.7467 | 0.7944 | 0.9967 | 0.5898 | 0.4966 |
231
+ | 0.0065 | 38.8889 | 1750 | 0.0069 | 0.7523 | 0.8170 | 0.9966 | 0.6354 | 0.5079 |
232
+ | 0.0062 | 39.1111 | 1760 | 0.0069 | 0.7468 | 0.7940 | 0.9967 | 0.5891 | 0.4968 |
233
+ | 0.0036 | 39.3333 | 1770 | 0.0068 | 0.7512 | 0.8100 | 0.9967 | 0.6213 | 0.5057 |
234
+ | 0.0024 | 39.5556 | 1780 | 0.0068 | 0.7493 | 0.8023 | 0.9967 | 0.6057 | 0.5019 |
235
+ | 0.0021 | 39.7778 | 1790 | 0.0068 | 0.7501 | 0.8042 | 0.9967 | 0.6095 | 0.5035 |
236
+ | 0.0049 | 40.0 | 1800 | 0.0068 | 0.7511 | 0.8077 | 0.9967 | 0.6166 | 0.5054 |
237
+ | 0.001 | 40.2222 | 1810 | 0.0068 | 0.7499 | 0.8042 | 0.9967 | 0.6096 | 0.5030 |
238
+ | 0.0089 | 40.4444 | 1820 | 0.0068 | 0.7499 | 0.8036 | 0.9967 | 0.6083 | 0.5030 |
239
+ | 0.0027 | 40.6667 | 1830 | 0.0068 | 0.7510 | 0.8094 | 0.9967 | 0.6200 | 0.5054 |
240
+ | 0.0043 | 40.8889 | 1840 | 0.0068 | 0.7483 | 0.7984 | 0.9967 | 0.5979 | 0.5000 |
241
+ | 0.0028 | 41.1111 | 1850 | 0.0068 | 0.7507 | 0.8058 | 0.9967 | 0.6128 | 0.5046 |
242
+ | 0.0057 | 41.3333 | 1860 | 0.0068 | 0.7500 | 0.8043 | 0.9967 | 0.6098 | 0.5032 |
243
+ | 0.0029 | 41.5556 | 1870 | 0.0068 | 0.7478 | 0.7968 | 0.9967 | 0.5946 | 0.4988 |
244
+ | 0.0019 | 41.7778 | 1880 | 0.0068 | 0.7516 | 0.8096 | 0.9967 | 0.6205 | 0.5065 |
245
+ | 0.0039 | 42.0 | 1890 | 0.0068 | 0.7498 | 0.8025 | 0.9967 | 0.6062 | 0.5028 |
246
+ | 0.0036 | 42.2222 | 1900 | 0.0068 | 0.7514 | 0.8082 | 0.9967 | 0.6176 | 0.5061 |
247
+ | 0.0034 | 42.4444 | 1910 | 0.0068 | 0.7507 | 0.8056 | 0.9967 | 0.6124 | 0.5047 |
248
+ | 0.0107 | 42.6667 | 1920 | 0.0068 | 0.7485 | 0.7983 | 0.9967 | 0.5978 | 0.5003 |
249
+ | 0.0144 | 42.8889 | 1930 | 0.0068 | 0.7538 | 0.8190 | 0.9967 | 0.6394 | 0.5110 |
250
+ | 0.0071 | 43.1111 | 1940 | 0.0068 | 0.7483 | 0.7978 | 0.9967 | 0.5966 | 0.4998 |
251
+ | 0.0042 | 43.3333 | 1950 | 0.0068 | 0.7523 | 0.8118 | 0.9967 | 0.6249 | 0.5079 |
252
+ | 0.0025 | 43.5556 | 1960 | 0.0068 | 0.7506 | 0.8045 | 0.9967 | 0.6101 | 0.5045 |
253
+ | 0.0068 | 43.7778 | 1970 | 0.0068 | 0.7520 | 0.8099 | 0.9967 | 0.6211 | 0.5073 |
254
+ | 0.0082 | 44.0 | 1980 | 0.0068 | 0.7482 | 0.7972 | 0.9968 | 0.5954 | 0.4997 |
255
+ | 0.0067 | 44.2222 | 1990 | 0.0068 | 0.7527 | 0.8147 | 0.9967 | 0.6307 | 0.5088 |
256
+ | 0.0042 | 44.4444 | 2000 | 0.0069 | 0.7478 | 0.7956 | 0.9968 | 0.5922 | 0.4989 |
257
+ | 0.0028 | 44.6667 | 2010 | 0.0068 | 0.7529 | 0.8144 | 0.9967 | 0.6301 | 0.5091 |
258
+ | 0.0135 | 44.8889 | 2020 | 0.0068 | 0.7499 | 0.8019 | 0.9967 | 0.6049 | 0.5031 |
259
+ | 0.0076 | 45.1111 | 2030 | 0.0068 | 0.7513 | 0.8074 | 0.9967 | 0.6159 | 0.5059 |
260
+ | 0.0051 | 45.3333 | 2040 | 0.0068 | 0.7494 | 0.8016 | 0.9967 | 0.6043 | 0.5021 |
261
+ | 0.0013 | 45.5556 | 2050 | 0.0068 | 0.7500 | 0.8022 | 0.9967 | 0.6056 | 0.5033 |
262
+ | 0.0058 | 45.7778 | 2060 | 0.0068 | 0.7492 | 0.7990 | 0.9968 | 0.5992 | 0.5017 |
263
+ | 0.0051 | 46.0 | 2070 | 0.0068 | 0.7514 | 0.8075 | 0.9967 | 0.6161 | 0.5060 |
264
+ | 0.0049 | 46.2222 | 2080 | 0.0068 | 0.7513 | 0.8076 | 0.9967 | 0.6164 | 0.5059 |
265
+ | 0.0039 | 46.4444 | 2090 | 0.0068 | 0.7504 | 0.8043 | 0.9967 | 0.6097 | 0.5041 |
266
+ | 0.0027 | 46.6667 | 2100 | 0.0068 | 0.7509 | 0.8054 | 0.9967 | 0.6121 | 0.5051 |
267
+ | 0.0051 | 46.8889 | 2110 | 0.0068 | 0.7511 | 0.8058 | 0.9967 | 0.6128 | 0.5054 |
268
+ | 0.0034 | 47.1111 | 2120 | 0.0068 | 0.7511 | 0.8062 | 0.9967 | 0.6136 | 0.5055 |
269
+ | 0.0108 | 47.3333 | 2130 | 0.0068 | 0.7507 | 0.8034 | 0.9967 | 0.6079 | 0.5047 |
270
+ | 0.0054 | 47.5556 | 2140 | 0.0068 | 0.7510 | 0.8053 | 0.9967 | 0.6117 | 0.5052 |
271
+ | 0.0027 | 47.7778 | 2150 | 0.0068 | 0.7477 | 0.7951 | 0.9968 | 0.5912 | 0.4986 |
272
+ | 0.0137 | 48.0 | 2160 | 0.0068 | 0.7529 | 0.8116 | 0.9967 | 0.6244 | 0.5091 |
273
+ | 0.0032 | 48.2222 | 2170 | 0.0068 | 0.7512 | 0.8053 | 0.9967 | 0.6118 | 0.5057 |
274
+ | 0.0039 | 48.4444 | 2180 | 0.0068 | 0.7506 | 0.8045 | 0.9967 | 0.6102 | 0.5045 |
275
+ | 0.0037 | 48.6667 | 2190 | 0.0068 | 0.7523 | 0.8114 | 0.9967 | 0.6240 | 0.5078 |
276
+ | 0.0058 | 48.8889 | 2200 | 0.0068 | 0.7516 | 0.8067 | 0.9967 | 0.6145 | 0.5064 |
277
+ | 0.0042 | 49.1111 | 2210 | 0.0068 | 0.7513 | 0.8070 | 0.9967 | 0.6152 | 0.5059 |
278
+ | 0.0035 | 49.3333 | 2220 | 0.0068 | 0.7511 | 0.8054 | 0.9967 | 0.6120 | 0.5054 |
279
+ | 0.0106 | 49.5556 | 2230 | 0.0068 | 0.7519 | 0.8099 | 0.9967 | 0.6209 | 0.5071 |
280
+ | 0.0037 | 49.7778 | 2240 | 0.0068 | 0.7509 | 0.8053 | 0.9967 | 0.6117 | 0.5052 |
281
+ | 0.0043 | 50.0 | 2250 | 0.0068 | 0.7501 | 0.8029 | 0.9967 | 0.6070 | 0.5035 |
282
+ | 0.0053 | 50.2222 | 2260 | 0.0068 | 0.7509 | 0.8053 | 0.9967 | 0.6117 | 0.5051 |
283
+ | 0.0082 | 50.4444 | 2270 | 0.0068 | 0.7513 | 0.8059 | 0.9967 | 0.6130 | 0.5059 |
284
+ | 0.0049 | 50.6667 | 2280 | 0.0068 | 0.7527 | 0.8119 | 0.9967 | 0.6251 | 0.5088 |
285
+ | 0.0059 | 50.8889 | 2290 | 0.0068 | 0.7533 | 0.8130 | 0.9967 | 0.6273 | 0.5099 |
286
+ | 0.0064 | 51.1111 | 2300 | 0.0068 | 0.7524 | 0.8097 | 0.9967 | 0.6207 | 0.5080 |
287
+ | 0.0039 | 51.3333 | 2310 | 0.0068 | 0.7513 | 0.8059 | 0.9967 | 0.6130 | 0.5059 |
288
+ | 0.0074 | 51.5556 | 2320 | 0.0068 | 0.7520 | 0.8097 | 0.9967 | 0.6205 | 0.5074 |
289
+ | 0.0029 | 51.7778 | 2330 | 0.0068 | 0.7503 | 0.8028 | 0.9967 | 0.6067 | 0.5038 |
290
+ | 0.0046 | 52.0 | 2340 | 0.0068 | 0.7508 | 0.8050 | 0.9967 | 0.6112 | 0.5049 |
291
+ | 0.0042 | 52.2222 | 2350 | 0.0068 | 0.7480 | 0.7951 | 0.9968 | 0.5911 | 0.4992 |
292
+ | 0.0031 | 52.4444 | 2360 | 0.0068 | 0.7522 | 0.8091 | 0.9967 | 0.6194 | 0.5076 |
293
+ | 0.0033 | 52.6667 | 2370 | 0.0068 | 0.7496 | 0.8005 | 0.9968 | 0.6020 | 0.5025 |
294
+ | 0.0022 | 52.8889 | 2380 | 0.0068 | 0.7516 | 0.8073 | 0.9967 | 0.6157 | 0.5064 |
295
+ | 0.0049 | 53.1111 | 2390 | 0.0068 | 0.7520 | 0.8091 | 0.9967 | 0.6194 | 0.5073 |
296
+ | 0.004 | 53.3333 | 2400 | 0.0068 | 0.7534 | 0.8141 | 0.9967 | 0.6294 | 0.5100 |
297
+ | 0.0087 | 53.5556 | 2410 | 0.0068 | 0.7484 | 0.7962 | 0.9968 | 0.5934 | 0.5001 |
298
+ | 0.0096 | 53.7778 | 2420 | 0.0068 | 0.7526 | 0.8111 | 0.9967 | 0.6234 | 0.5084 |
299
+ | 0.0047 | 54.0 | 2430 | 0.0068 | 0.7521 | 0.8088 | 0.9967 | 0.6188 | 0.5074 |
300
+ | 0.0056 | 54.2222 | 2440 | 0.0068 | 0.7515 | 0.8075 | 0.9967 | 0.6162 | 0.5062 |
301
+ | 0.0081 | 54.4444 | 2450 | 0.0068 | 0.7514 | 0.8059 | 0.9967 | 0.6130 | 0.5061 |
302
+ | 0.0029 | 54.6667 | 2460 | 0.0068 | 0.7527 | 0.8113 | 0.9967 | 0.6238 | 0.5087 |
303
+ | 0.0046 | 54.8889 | 2470 | 0.0068 | 0.7498 | 0.7998 | 0.9968 | 0.6007 | 0.5029 |
304
+ | 0.0012 | 55.1111 | 2480 | 0.0068 | 0.7528 | 0.8114 | 0.9967 | 0.6240 | 0.5088 |
305
+ | 0.0033 | 55.3333 | 2490 | 0.0068 | 0.7507 | 0.8033 | 0.9967 | 0.6078 | 0.5047 |
306
+ | 0.0036 | 55.5556 | 2500 | 0.0068 | 0.7534 | 0.8138 | 0.9967 | 0.6290 | 0.5102 |
307
+ | 0.0088 | 55.7778 | 2510 | 0.0068 | 0.7511 | 0.8042 | 0.9968 | 0.6095 | 0.5055 |
308
+ | 0.0032 | 56.0 | 2520 | 0.0068 | 0.7530 | 0.8122 | 0.9967 | 0.6256 | 0.5093 |
309
+ | 0.0038 | 56.2222 | 2530 | 0.0068 | 0.7525 | 0.8098 | 0.9967 | 0.6208 | 0.5083 |
310
+ | 0.0144 | 56.4444 | 2540 | 0.0068 | 0.7520 | 0.8086 | 0.9967 | 0.6184 | 0.5074 |
311
+ | 0.004 | 56.6667 | 2550 | 0.0068 | 0.7507 | 0.8034 | 0.9968 | 0.6079 | 0.5047 |
312
+ | 0.0127 | 56.8889 | 2560 | 0.0068 | 0.7530 | 0.8114 | 0.9967 | 0.6241 | 0.5094 |
313
+ | 0.0053 | 57.1111 | 2570 | 0.0068 | 0.7509 | 0.8034 | 0.9968 | 0.6078 | 0.5050 |
314
+ | 0.0048 | 57.3333 | 2580 | 0.0068 | 0.7520 | 0.8092 | 0.9967 | 0.6197 | 0.5073 |
315
+ | 0.0073 | 57.5556 | 2590 | 0.0068 | 0.7512 | 0.8049 | 0.9967 | 0.6110 | 0.5056 |
316
+ | 0.005 | 57.7778 | 2600 | 0.0068 | 0.7522 | 0.8078 | 0.9967 | 0.6168 | 0.5076 |
317
+ | 0.0048 | 58.0 | 2610 | 0.0067 | 0.7517 | 0.8056 | 0.9968 | 0.6123 | 0.5067 |
318
+ | 0.0028 | 58.2222 | 2620 | 0.0068 | 0.7527 | 0.8100 | 0.9967 | 0.6211 | 0.5088 |
319
+ | 0.0051 | 58.4444 | 2630 | 0.0068 | 0.7530 | 0.8115 | 0.9967 | 0.6243 | 0.5092 |
320
+ | 0.0105 | 58.6667 | 2640 | 0.0068 | 0.7504 | 0.8018 | 0.9968 | 0.6047 | 0.5041 |
321
+ | 0.0121 | 58.8889 | 2650 | 0.0067 | 0.7529 | 0.8103 | 0.9967 | 0.6218 | 0.5091 |
322
+ | 0.0048 | 59.1111 | 2660 | 0.0068 | 0.7510 | 0.8037 | 0.9968 | 0.6085 | 0.5053 |
323
+ | 0.0039 | 59.3333 | 2670 | 0.0067 | 0.7530 | 0.8113 | 0.9967 | 0.6239 | 0.5094 |
324
+ | 0.0054 | 59.5556 | 2680 | 0.0068 | 0.7501 | 0.8004 | 0.9968 | 0.6019 | 0.5035 |
325
+ | 0.0079 | 59.7778 | 2690 | 0.0068 | 0.7538 | 0.8150 | 0.9967 | 0.6313 | 0.5109 |
326
+ | 0.0031 | 60.0 | 2700 | 0.0068 | 0.7496 | 0.8003 | 0.9968 | 0.6017 | 0.5025 |
327
+ | 0.0057 | 60.2222 | 2710 | 0.0068 | 0.7514 | 0.8060 | 0.9967 | 0.6131 | 0.5061 |
328
+ | 0.0046 | 60.4444 | 2720 | 0.0068 | 0.7537 | 0.8154 | 0.9967 | 0.6322 | 0.5107 |
329
+ | 0.0038 | 60.6667 | 2730 | 0.0068 | 0.7535 | 0.8139 | 0.9967 | 0.6290 | 0.5103 |
330
+ | 0.0029 | 60.8889 | 2740 | 0.0068 | 0.7514 | 0.8060 | 0.9967 | 0.6131 | 0.5060 |
331
+ | 0.0036 | 61.1111 | 2750 | 0.0067 | 0.7541 | 0.8158 | 0.9967 | 0.6328 | 0.5114 |
332
+ | 0.0114 | 61.3333 | 2760 | 0.0067 | 0.7509 | 0.8047 | 0.9967 | 0.6106 | 0.5050 |
333
+ | 0.0171 | 61.5556 | 2770 | 0.0067 | 0.7526 | 0.8114 | 0.9967 | 0.6241 | 0.5086 |
334
+ | 0.0077 | 61.7778 | 2780 | 0.0067 | 0.7534 | 0.8132 | 0.9967 | 0.6277 | 0.5100 |
335
+ | 0.0031 | 62.0 | 2790 | 0.0067 | 0.7535 | 0.8128 | 0.9967 | 0.6268 | 0.5103 |
336
+ | 0.0039 | 62.2222 | 2800 | 0.0067 | 0.7542 | 0.8177 | 0.9967 | 0.6367 | 0.5116 |
337
+ | 0.0078 | 62.4444 | 2810 | 0.0067 | 0.7517 | 0.8058 | 0.9967 | 0.6128 | 0.5067 |
338
+ | 0.0176 | 62.6667 | 2820 | 0.0068 | 0.7534 | 0.8127 | 0.9967 | 0.6266 | 0.5101 |
339
+ | 0.0167 | 62.8889 | 2830 | 0.0068 | 0.7503 | 0.8010 | 0.9968 | 0.6031 | 0.5038 |
340
+ | 0.0051 | 63.1111 | 2840 | 0.0067 | 0.7523 | 0.8090 | 0.9967 | 0.6192 | 0.5079 |
341
+ | 0.0049 | 63.3333 | 2850 | 0.0068 | 0.7495 | 0.7990 | 0.9968 | 0.5991 | 0.5023 |
342
+ | 0.007 | 63.5556 | 2860 | 0.0068 | 0.7514 | 0.8051 | 0.9967 | 0.6114 | 0.5060 |
343
+ | 0.01 | 63.7778 | 2870 | 0.0068 | 0.7522 | 0.8085 | 0.9967 | 0.6183 | 0.5077 |
344
+ | 0.0009 | 64.0 | 2880 | 0.0067 | 0.7525 | 0.8107 | 0.9967 | 0.6227 | 0.5084 |
345
+ | 0.0104 | 64.2222 | 2890 | 0.0067 | 0.7497 | 0.7996 | 0.9968 | 0.6003 | 0.5027 |
346
+ | 0.0039 | 64.4444 | 2900 | 0.0067 | 0.7516 | 0.8063 | 0.9967 | 0.6137 | 0.5064 |
347
+ | 0.0012 | 64.6667 | 2910 | 0.0067 | 0.7515 | 0.8061 | 0.9967 | 0.6133 | 0.5062 |
348
+ | 0.0074 | 64.8889 | 2920 | 0.0067 | 0.7510 | 0.8045 | 0.9967 | 0.6101 | 0.5053 |
349
+ | 0.0055 | 65.1111 | 2930 | 0.0067 | 0.7512 | 0.8049 | 0.9967 | 0.6109 | 0.5057 |
350
+ | 0.0072 | 65.3333 | 2940 | 0.0068 | 0.7515 | 0.8049 | 0.9968 | 0.6108 | 0.5062 |
351
+ | 0.0041 | 65.5556 | 2950 | 0.0067 | 0.7518 | 0.8068 | 0.9967 | 0.6148 | 0.5068 |
352
+ | 0.0048 | 65.7778 | 2960 | 0.0067 | 0.7527 | 0.8095 | 0.9967 | 0.6203 | 0.5087 |
353
+ | 0.0072 | 66.0 | 2970 | 0.0067 | 0.7529 | 0.8112 | 0.9967 | 0.6236 | 0.5091 |
354
+ | 0.0103 | 66.2222 | 2980 | 0.0067 | 0.7500 | 0.8005 | 0.9968 | 0.6021 | 0.5032 |
355
+ | 0.0028 | 66.4444 | 2990 | 0.0068 | 0.7518 | 0.8071 | 0.9967 | 0.6153 | 0.5069 |
356
+ | 0.0014 | 66.6667 | 3000 | 0.0067 | 0.7534 | 0.8123 | 0.9967 | 0.6258 | 0.5100 |
357
+ | 0.0031 | 66.8889 | 3010 | 0.0068 | 0.7518 | 0.8059 | 0.9968 | 0.6130 | 0.5068 |
358
+ | 0.0041 | 67.1111 | 3020 | 0.0067 | 0.7533 | 0.8113 | 0.9967 | 0.6239 | 0.5100 |
359
+ | 0.014 | 67.3333 | 3030 | 0.0067 | 0.7523 | 0.8078 | 0.9967 | 0.6168 | 0.5078 |
360
+ | 0.0024 | 67.5556 | 3040 | 0.0068 | 0.7526 | 0.8099 | 0.9967 | 0.6210 | 0.5086 |
361
+ | 0.0029 | 67.7778 | 3050 | 0.0068 | 0.7517 | 0.8060 | 0.9967 | 0.6131 | 0.5067 |
362
+ | 0.0118 | 68.0 | 3060 | 0.0067 | 0.7525 | 0.8088 | 0.9967 | 0.6188 | 0.5082 |
363
+ | 0.0013 | 68.2222 | 3070 | 0.0068 | 0.7521 | 0.8068 | 0.9968 | 0.6147 | 0.5075 |
364
+ | 0.005 | 68.4444 | 3080 | 0.0068 | 0.7520 | 0.8069 | 0.9967 | 0.6149 | 0.5073 |
365
+ | 0.0048 | 68.6667 | 3090 | 0.0068 | 0.7510 | 0.8027 | 0.9968 | 0.6064 | 0.5052 |
366
+ | 0.0072 | 68.8889 | 3100 | 0.0068 | 0.7515 | 0.8046 | 0.9968 | 0.6103 | 0.5063 |
367
+ | 0.004 | 69.1111 | 3110 | 0.0068 | 0.7514 | 0.8047 | 0.9968 | 0.6105 | 0.5060 |
368
+ | 0.0027 | 69.3333 | 3120 | 0.0068 | 0.7532 | 0.8130 | 0.9967 | 0.6272 | 0.5098 |
369
+ | 0.0027 | 69.5556 | 3130 | 0.0068 | 0.7526 | 0.8100 | 0.9967 | 0.6213 | 0.5084 |
370
+ | 0.0045 | 69.7778 | 3140 | 0.0067 | 0.7520 | 0.8072 | 0.9967 | 0.6156 | 0.5073 |
371
+ | 0.0029 | 70.0 | 3150 | 0.0068 | 0.7503 | 0.8009 | 0.9968 | 0.6028 | 0.5038 |
372
+ | 0.0117 | 70.2222 | 3160 | 0.0067 | 0.7539 | 0.8147 | 0.9967 | 0.6306 | 0.5111 |
373
+ | 0.01 | 70.4444 | 3170 | 0.0067 | 0.7520 | 0.8070 | 0.9967 | 0.6151 | 0.5072 |
374
+ | 0.0025 | 70.6667 | 3180 | 0.0067 | 0.7526 | 0.8095 | 0.9967 | 0.6202 | 0.5086 |
375
+ | 0.0053 | 70.8889 | 3190 | 0.0067 | 0.7529 | 0.8114 | 0.9967 | 0.6240 | 0.5091 |
376
+ | 0.0154 | 71.1111 | 3200 | 0.0067 | 0.7513 | 0.8052 | 0.9967 | 0.6116 | 0.5059 |
377
+ | 0.0071 | 71.3333 | 3210 | 0.0067 | 0.7550 | 0.8205 | 0.9967 | 0.6423 | 0.5134 |
378
+ | 0.0055 | 71.5556 | 3220 | 0.0067 | 0.7511 | 0.8034 | 0.9968 | 0.6079 | 0.5055 |
379
+ | 0.0031 | 71.7778 | 3230 | 0.0067 | 0.7512 | 0.8037 | 0.9968 | 0.6085 | 0.5056 |
380
+ | 0.0046 | 72.0 | 3240 | 0.0067 | 0.7541 | 0.8169 | 0.9967 | 0.6351 | 0.5115 |
381
+ | 0.0046 | 72.2222 | 3250 | 0.0067 | 0.7523 | 0.8086 | 0.9967 | 0.6184 | 0.5078 |
382
+ | 0.01 | 72.4444 | 3260 | 0.0067 | 0.7522 | 0.8072 | 0.9967 | 0.6155 | 0.5076 |
383
+ | 0.007 | 72.6667 | 3270 | 0.0067 | 0.7536 | 0.8143 | 0.9967 | 0.6298 | 0.5105 |
384
+ | 0.0021 | 72.8889 | 3280 | 0.0067 | 0.7510 | 0.8034 | 0.9968 | 0.6079 | 0.5052 |
385
+ | 0.0025 | 73.1111 | 3290 | 0.0067 | 0.7512 | 0.8040 | 0.9968 | 0.6091 | 0.5057 |
386
+ | 0.0079 | 73.3333 | 3300 | 0.0067 | 0.7520 | 0.8070 | 0.9967 | 0.6152 | 0.5073 |
387
+ | 0.0103 | 73.5556 | 3310 | 0.0067 | 0.7518 | 0.8060 | 0.9968 | 0.6131 | 0.5069 |
388
+ | 0.0074 | 73.7778 | 3320 | 0.0067 | 0.7521 | 0.8079 | 0.9967 | 0.6169 | 0.5075 |
389
+ | 0.0024 | 74.0 | 3330 | 0.0067 | 0.7530 | 0.8114 | 0.9967 | 0.6240 | 0.5093 |
390
+ | 0.0022 | 74.2222 | 3340 | 0.0067 | 0.7512 | 0.8046 | 0.9967 | 0.6104 | 0.5057 |
391
+ | 0.0129 | 74.4444 | 3350 | 0.0067 | 0.7524 | 0.8079 | 0.9967 | 0.6169 | 0.5080 |
392
+ | 0.0047 | 74.6667 | 3360 | 0.0067 | 0.7545 | 0.8162 | 0.9967 | 0.6338 | 0.5123 |
393
+ | 0.0012 | 74.8889 | 3370 | 0.0067 | 0.7515 | 0.8047 | 0.9968 | 0.6106 | 0.5063 |
394
+ | 0.0139 | 75.1111 | 3380 | 0.0068 | 0.7510 | 0.8029 | 0.9968 | 0.6069 | 0.5053 |
395
+ | 0.0101 | 75.3333 | 3390 | 0.0067 | 0.7543 | 0.8162 | 0.9967 | 0.6337 | 0.5118 |
396
+ | 0.01 | 75.5556 | 3400 | 0.0067 | 0.7524 | 0.8084 | 0.9967 | 0.6180 | 0.5081 |
397
+ | 0.0025 | 75.7778 | 3410 | 0.0067 | 0.7530 | 0.8099 | 0.9967 | 0.6210 | 0.5093 |
398
+ | 0.0057 | 76.0 | 3420 | 0.0067 | 0.7537 | 0.8130 | 0.9967 | 0.6272 | 0.5107 |
399
+ | 0.0043 | 76.2222 | 3430 | 0.0068 | 0.7529 | 0.8099 | 0.9967 | 0.6211 | 0.5091 |
400
+ | 0.0036 | 76.4444 | 3440 | 0.0067 | 0.7532 | 0.8116 | 0.9967 | 0.6245 | 0.5097 |
401
+ | 0.0015 | 76.6667 | 3450 | 0.0068 | 0.7526 | 0.8089 | 0.9967 | 0.6189 | 0.5085 |
402
+ | 0.0028 | 76.8889 | 3460 | 0.0068 | 0.7528 | 0.8090 | 0.9967 | 0.6193 | 0.5088 |
403
+ | 0.0134 | 77.1111 | 3470 | 0.0067 | 0.7533 | 0.8122 | 0.9967 | 0.6255 | 0.5099 |
404
+ | 0.0083 | 77.3333 | 3480 | 0.0067 | 0.7525 | 0.8092 | 0.9967 | 0.6196 | 0.5083 |
405
+ | 0.0075 | 77.5556 | 3490 | 0.0067 | 0.7532 | 0.8122 | 0.9967 | 0.6256 | 0.5096 |
406
+ | 0.0111 | 77.7778 | 3500 | 0.0067 | 0.7527 | 0.8101 | 0.9967 | 0.6215 | 0.5087 |
407
+ | 0.0075 | 78.0 | 3510 | 0.0068 | 0.7510 | 0.8032 | 0.9968 | 0.6075 | 0.5053 |
408
+ | 0.0173 | 78.2222 | 3520 | 0.0067 | 0.7537 | 0.8134 | 0.9967 | 0.6282 | 0.5107 |
409
+ | 0.0046 | 78.4444 | 3530 | 0.0068 | 0.7522 | 0.8079 | 0.9967 | 0.6170 | 0.5076 |
410
+ | 0.0023 | 78.6667 | 3540 | 0.0068 | 0.7533 | 0.8116 | 0.9967 | 0.6244 | 0.5098 |
411
+ | 0.005 | 78.8889 | 3550 | 0.0068 | 0.7530 | 0.8112 | 0.9967 | 0.6237 | 0.5093 |
412
+ | 0.0016 | 79.1111 | 3560 | 0.0068 | 0.7530 | 0.8110 | 0.9967 | 0.6233 | 0.5093 |
413
+ | 0.0045 | 79.3333 | 3570 | 0.0068 | 0.7502 | 0.8009 | 0.9968 | 0.6029 | 0.5037 |
414
+ | 0.0052 | 79.5556 | 3580 | 0.0068 | 0.7520 | 0.8071 | 0.9967 | 0.6153 | 0.5073 |
415
+ | 0.0088 | 79.7778 | 3590 | 0.0068 | 0.7532 | 0.8120 | 0.9967 | 0.6252 | 0.5097 |
416
+ | 0.0052 | 80.0 | 3600 | 0.0068 | 0.7521 | 0.8068 | 0.9967 | 0.6148 | 0.5074 |
417
+ | 0.0019 | 80.2222 | 3610 | 0.0068 | 0.7525 | 0.8083 | 0.9967 | 0.6178 | 0.5084 |
418
+ | 0.0094 | 80.4444 | 3620 | 0.0068 | 0.7519 | 0.8063 | 0.9967 | 0.6137 | 0.5071 |
419
+ | 0.0111 | 80.6667 | 3630 | 0.0067 | 0.7530 | 0.8104 | 0.9967 | 0.6220 | 0.5092 |
420
+ | 0.0046 | 80.8889 | 3640 | 0.0067 | 0.7524 | 0.8081 | 0.9967 | 0.6173 | 0.5080 |
421
+ | 0.0043 | 81.1111 | 3650 | 0.0067 | 0.7522 | 0.8072 | 0.9967 | 0.6156 | 0.5076 |
422
+ | 0.0184 | 81.3333 | 3660 | 0.0067 | 0.7519 | 0.8060 | 0.9968 | 0.6131 | 0.5070 |
423
+ | 0.0109 | 81.5556 | 3670 | 0.0067 | 0.7537 | 0.8132 | 0.9967 | 0.6277 | 0.5106 |
424
+ | 0.0115 | 81.7778 | 3680 | 0.0067 | 0.7533 | 0.8113 | 0.9967 | 0.6237 | 0.5099 |
425
+ | 0.0033 | 82.0 | 3690 | 0.0067 | 0.7520 | 0.8061 | 0.9968 | 0.6133 | 0.5073 |
426
+ | 0.0097 | 82.2222 | 3700 | 0.0067 | 0.7520 | 0.8060 | 0.9968 | 0.6131 | 0.5073 |
427
+ | 0.0021 | 82.4444 | 3710 | 0.0067 | 0.7524 | 0.8078 | 0.9967 | 0.6168 | 0.5080 |
428
+ | 0.004 | 82.6667 | 3720 | 0.0067 | 0.7528 | 0.8093 | 0.9967 | 0.6198 | 0.5088 |
429
+ | 0.0044 | 82.8889 | 3730 | 0.0068 | 0.7523 | 0.8073 | 0.9967 | 0.6159 | 0.5079 |
430
+ | 0.0035 | 83.1111 | 3740 | 0.0067 | 0.7534 | 0.8124 | 0.9967 | 0.6260 | 0.5101 |
431
+ | 0.0107 | 83.3333 | 3750 | 0.0067 | 0.7540 | 0.8153 | 0.9967 | 0.6320 | 0.5114 |
432
+ | 0.0032 | 83.5556 | 3760 | 0.0067 | 0.7534 | 0.8122 | 0.9967 | 0.6256 | 0.5101 |
433
+ | 0.0081 | 83.7778 | 3770 | 0.0067 | 0.7535 | 0.8120 | 0.9967 | 0.6253 | 0.5102 |
434
+ | 0.0035 | 84.0 | 3780 | 0.0067 | 0.7530 | 0.8108 | 0.9967 | 0.6228 | 0.5093 |
435
+ | 0.0014 | 84.2222 | 3790 | 0.0068 | 0.7528 | 0.8100 | 0.9967 | 0.6212 | 0.5090 |
436
+ | 0.0035 | 84.4444 | 3800 | 0.0067 | 0.7537 | 0.8135 | 0.9967 | 0.6283 | 0.5107 |
437
+ | 0.0027 | 84.6667 | 3810 | 0.0067 | 0.7530 | 0.8104 | 0.9967 | 0.6221 | 0.5093 |
438
+ | 0.0045 | 84.8889 | 3820 | 0.0067 | 0.7529 | 0.8107 | 0.9967 | 0.6227 | 0.5091 |
439
+ | 0.0077 | 85.1111 | 3830 | 0.0067 | 0.7524 | 0.8084 | 0.9967 | 0.6181 | 0.5080 |
440
+ | 0.0093 | 85.3333 | 3840 | 0.0067 | 0.7528 | 0.8097 | 0.9967 | 0.6207 | 0.5089 |
441
+ | 0.0093 | 85.5556 | 3850 | 0.0067 | 0.7525 | 0.8082 | 0.9967 | 0.6175 | 0.5082 |
442
+ | 0.0078 | 85.7778 | 3860 | 0.0067 | 0.7516 | 0.8048 | 0.9968 | 0.6107 | 0.5064 |
443
+ | 0.0085 | 86.0 | 3870 | 0.0067 | 0.7530 | 0.8107 | 0.9967 | 0.6225 | 0.5092 |
444
+ | 0.0018 | 86.2222 | 3880 | 0.0067 | 0.7527 | 0.8092 | 0.9967 | 0.6195 | 0.5086 |
445
+ | 0.0145 | 86.4444 | 3890 | 0.0068 | 0.7504 | 0.8013 | 0.9968 | 0.6036 | 0.5040 |
446
+ | 0.0084 | 86.6667 | 3900 | 0.0067 | 0.7528 | 0.8099 | 0.9967 | 0.6211 | 0.5088 |
447
+ | 0.0023 | 86.8889 | 3910 | 0.0067 | 0.7538 | 0.8136 | 0.9967 | 0.6285 | 0.5108 |
448
+ | 0.0029 | 87.1111 | 3920 | 0.0067 | 0.7536 | 0.8129 | 0.9967 | 0.6271 | 0.5106 |
449
+ | 0.0029 | 87.3333 | 3930 | 0.0067 | 0.7534 | 0.8127 | 0.9967 | 0.6266 | 0.5102 |
450
+ | 0.0087 | 87.5556 | 3940 | 0.0067 | 0.7530 | 0.8109 | 0.9967 | 0.6231 | 0.5092 |
451
+ | 0.0033 | 87.7778 | 3950 | 0.0068 | 0.7521 | 0.8076 | 0.9967 | 0.6165 | 0.5074 |
452
+ | 0.0062 | 88.0 | 3960 | 0.0067 | 0.7532 | 0.8117 | 0.9967 | 0.6247 | 0.5097 |
453
+ | 0.0077 | 88.2222 | 3970 | 0.0067 | 0.7528 | 0.8099 | 0.9967 | 0.6211 | 0.5088 |
454
+ | 0.011 | 88.4444 | 3980 | 0.0068 | 0.7532 | 0.8115 | 0.9967 | 0.6242 | 0.5098 |
455
+ | 0.0032 | 88.6667 | 3990 | 0.0068 | 0.7534 | 0.8118 | 0.9967 | 0.6248 | 0.5101 |
456
+ | 0.0133 | 88.8889 | 4000 | 0.0068 | 0.7534 | 0.8115 | 0.9967 | 0.6242 | 0.5101 |
457
+ | 0.0092 | 89.1111 | 4010 | 0.0067 | 0.7532 | 0.8109 | 0.9967 | 0.6230 | 0.5096 |
458
+ | 0.0052 | 89.3333 | 4020 | 0.0067 | 0.7537 | 0.8129 | 0.9967 | 0.6270 | 0.5107 |
459
+ | 0.0057 | 89.5556 | 4030 | 0.0068 | 0.7533 | 0.8114 | 0.9967 | 0.6241 | 0.5099 |
460
+ | 0.003 | 89.7778 | 4040 | 0.0068 | 0.7534 | 0.8116 | 0.9967 | 0.6245 | 0.5100 |
461
+ | 0.0041 | 90.0 | 4050 | 0.0068 | 0.7539 | 0.8135 | 0.9967 | 0.6282 | 0.5111 |
462
+ | 0.0068 | 90.2222 | 4060 | 0.0068 | 0.7539 | 0.8137 | 0.9967 | 0.6286 | 0.5111 |
463
+ | 0.002 | 90.4444 | 4070 | 0.0068 | 0.7533 | 0.8115 | 0.9967 | 0.6243 | 0.5099 |
464
+ | 0.003 | 90.6667 | 4080 | 0.0068 | 0.7527 | 0.8096 | 0.9967 | 0.6203 | 0.5086 |
465
+ | 0.0137 | 90.8889 | 4090 | 0.0068 | 0.7528 | 0.8097 | 0.9967 | 0.6206 | 0.5089 |
466
+ | 0.0022 | 91.1111 | 4100 | 0.0068 | 0.7533 | 0.8114 | 0.9967 | 0.6241 | 0.5099 |
467
+ | 0.0022 | 91.3333 | 4110 | 0.0068 | 0.7534 | 0.8113 | 0.9967 | 0.6239 | 0.5100 |
468
+ | 0.0075 | 91.5556 | 4120 | 0.0068 | 0.7524 | 0.8078 | 0.9967 | 0.6168 | 0.5081 |
469
+ | 0.0108 | 91.7778 | 4130 | 0.0068 | 0.7525 | 0.8082 | 0.9967 | 0.6175 | 0.5083 |
470
+ | 0.0114 | 92.0 | 4140 | 0.0068 | 0.7523 | 0.8071 | 0.9968 | 0.6154 | 0.5079 |
471
+ | 0.0073 | 92.2222 | 4150 | 0.0068 | 0.7520 | 0.8062 | 0.9968 | 0.6135 | 0.5073 |
472
+ | 0.0055 | 92.4444 | 4160 | 0.0068 | 0.7523 | 0.8076 | 0.9967 | 0.6163 | 0.5080 |
473
+ | 0.0082 | 92.6667 | 4170 | 0.0068 | 0.7526 | 0.8087 | 0.9967 | 0.6187 | 0.5085 |
474
+ | 0.0043 | 92.8889 | 4180 | 0.0068 | 0.7525 | 0.8084 | 0.9967 | 0.6179 | 0.5083 |
475
+ | 0.0066 | 93.1111 | 4190 | 0.0068 | 0.7530 | 0.8100 | 0.9967 | 0.6213 | 0.5092 |
476
+ | 0.0156 | 93.3333 | 4200 | 0.0067 | 0.7533 | 0.8111 | 0.9967 | 0.6235 | 0.5099 |
477
+ | 0.0054 | 93.5556 | 4210 | 0.0067 | 0.7534 | 0.8115 | 0.9967 | 0.6242 | 0.5101 |
478
+ | 0.0032 | 93.7778 | 4220 | 0.0067 | 0.7537 | 0.8128 | 0.9967 | 0.6268 | 0.5106 |
479
+ | 0.0021 | 94.0 | 4230 | 0.0067 | 0.7534 | 0.8121 | 0.9967 | 0.6254 | 0.5101 |
480
+ | 0.0024 | 94.2222 | 4240 | 0.0068 | 0.7535 | 0.8120 | 0.9967 | 0.6253 | 0.5102 |
481
+ | 0.0084 | 94.4444 | 4250 | 0.0068 | 0.7533 | 0.8110 | 0.9967 | 0.6233 | 0.5098 |
482
+ | 0.0019 | 94.6667 | 4260 | 0.0067 | 0.7535 | 0.8124 | 0.9967 | 0.6261 | 0.5104 |
483
+ | 0.0049 | 94.8889 | 4270 | 0.0067 | 0.7535 | 0.8123 | 0.9967 | 0.6259 | 0.5102 |
484
+ | 0.0131 | 95.1111 | 4280 | 0.0067 | 0.7532 | 0.8109 | 0.9967 | 0.6230 | 0.5097 |
485
+ | 0.0008 | 95.3333 | 4290 | 0.0067 | 0.7539 | 0.8144 | 0.9967 | 0.6300 | 0.5112 |
486
+ | 0.0078 | 95.5556 | 4300 | 0.0067 | 0.7533 | 0.8114 | 0.9967 | 0.6240 | 0.5098 |
487
+ | 0.008 | 95.7778 | 4310 | 0.0067 | 0.7529 | 0.8097 | 0.9967 | 0.6207 | 0.5090 |
488
+ | 0.0021 | 96.0 | 4320 | 0.0067 | 0.7532 | 0.8109 | 0.9967 | 0.6229 | 0.5096 |
489
+ | 0.0053 | 96.2222 | 4330 | 0.0067 | 0.7530 | 0.8097 | 0.9967 | 0.6206 | 0.5092 |
490
+ | 0.01 | 96.4444 | 4340 | 0.0067 | 0.7528 | 0.8089 | 0.9967 | 0.6191 | 0.5088 |
491
+ | 0.0066 | 96.6667 | 4350 | 0.0067 | 0.7530 | 0.8101 | 0.9967 | 0.6215 | 0.5092 |
492
+ | 0.0058 | 96.8889 | 4360 | 0.0068 | 0.7533 | 0.8110 | 0.9967 | 0.6231 | 0.5098 |
493
+ | 0.0147 | 97.1111 | 4370 | 0.0067 | 0.7525 | 0.8077 | 0.9967 | 0.6166 | 0.5082 |
494
+ | 0.0012 | 97.3333 | 4380 | 0.0068 | 0.7535 | 0.8117 | 0.9967 | 0.6247 | 0.5102 |
495
+ | 0.0052 | 97.5556 | 4390 | 0.0068 | 0.7532 | 0.8108 | 0.9967 | 0.6228 | 0.5097 |
496
+ | 0.0012 | 97.7778 | 4400 | 0.0068 | 0.7530 | 0.8094 | 0.9967 | 0.6200 | 0.5092 |
497
+ | 0.0036 | 98.0 | 4410 | 0.0068 | 0.7533 | 0.8114 | 0.9967 | 0.6239 | 0.5099 |
498
+ | 0.0017 | 98.2222 | 4420 | 0.0068 | 0.7531 | 0.8105 | 0.9967 | 0.6222 | 0.5095 |
499
+ | 0.0013 | 98.4444 | 4430 | 0.0068 | 0.7532 | 0.8108 | 0.9967 | 0.6227 | 0.5096 |
500
+ | 0.0012 | 98.6667 | 4440 | 0.0067 | 0.7534 | 0.8119 | 0.9967 | 0.6250 | 0.5101 |
501
+ | 0.0024 | 98.8889 | 4450 | 0.0067 | 0.7532 | 0.8113 | 0.9967 | 0.6238 | 0.5096 |
502
+ | 0.0031 | 99.1111 | 4460 | 0.0067 | 0.7534 | 0.8120 | 0.9967 | 0.6252 | 0.5101 |
503
+ | 0.0034 | 99.3333 | 4470 | 0.0068 | 0.7532 | 0.8103 | 0.9967 | 0.6218 | 0.5096 |
504
+ | 0.0025 | 99.5556 | 4480 | 0.0067 | 0.7533 | 0.8114 | 0.9967 | 0.6240 | 0.5099 |
505
+ | 0.0106 | 99.7778 | 4490 | 0.0067 | 0.7529 | 0.8101 | 0.9967 | 0.6215 | 0.5091 |
506
+ | 0.0047 | 100.0 | 4500 | 0.0067 | 0.7531 | 0.8107 | 0.9967 | 0.6226 | 0.5094 |
507
+
508
+
509
+ ### Framework versions
510
+
511
+ - Transformers 4.46.3
512
+ - Pytorch 2.5.1+cu121
513
+ - Datasets 3.2.0
514
+ - Tokenizers 0.20.3
config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "PushkarA07/segformer-b0-finetuned-batch2-30nov",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "normal",
32
+ "1": "abnormality"
33
+ },
34
+ "image_size": 224,
35
+ "initializer_range": 0.02,
36
+ "label2id": {
37
+ "abnormality": 1,
38
+ "normal": 0
39
+ },
40
+ "layer_norm_eps": 1e-06,
41
+ "mlp_ratios": [
42
+ 4,
43
+ 4,
44
+ 4,
45
+ 4
46
+ ],
47
+ "model_type": "segformer",
48
+ "num_attention_heads": [
49
+ 1,
50
+ 2,
51
+ 5,
52
+ 8
53
+ ],
54
+ "num_channels": 3,
55
+ "num_encoder_blocks": 4,
56
+ "patch_sizes": [
57
+ 7,
58
+ 3,
59
+ 3,
60
+ 3
61
+ ],
62
+ "reshape_last_stage": true,
63
+ "semantic_loss_ignore_index": 255,
64
+ "sr_ratios": [
65
+ 8,
66
+ 4,
67
+ 2,
68
+ 1
69
+ ],
70
+ "strides": [
71
+ 4,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "torch_dtype": "float32",
77
+ "transformers_version": "4.46.3"
78
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28886b9dc8817bfef5ec1d5994d1a7ad4c72e7d4cb32cd2274826c877e5499e9
3
+ size 14884776
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fb9632cfc4fddcc117903c3b4b0ea3bb987d5f8120fbffebaf2ca38ef5df5fa
3
+ size 5304