--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-oldapp-oct-1 results: [] --- # segformer-b0-finetuned-oldapp-oct-1 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the PushkarA07/oldapptiles5 dataset. It achieves the following results on the evaluation set: - Loss: 0.0968 - Mean Iou: 0.9990 - Mean Accuracy: 1.0 - Overall Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:| | 0.6574 | 0.7143 | 10 | 0.6497 | 0.9990 | 1.0 | 1.0 | | 0.6005 | 1.4286 | 20 | 0.5761 | 0.9990 | 1.0 | 1.0 | | 0.5676 | 2.1429 | 30 | 0.4740 | 0.9990 | 1.0 | 1.0 | | 0.6287 | 2.8571 | 40 | 0.4394 | 0.9990 | 1.0 | 1.0 | | 0.5121 | 3.5714 | 50 | 0.4173 | 0.9990 | 1.0 | 1.0 | | 0.4744 | 4.2857 | 60 | 0.3842 | 0.9990 | 1.0 | 1.0 | | 0.4413 | 5.0 | 70 | 0.4107 | 0.9990 | 1.0 | 1.0 | | 0.4134 | 5.7143 | 80 | 0.3737 | 0.9990 | 1.0 | 1.0 | | 0.4139 | 6.4286 | 90 | 0.3424 | 0.9990 | 1.0 | 1.0 | | 0.4097 | 7.1429 | 100 | 0.3248 | 0.9990 | 1.0 | 1.0 | | 0.3645 | 7.8571 | 110 | 0.3218 | 0.9990 | 1.0 | 1.0 | | 0.3287 | 8.5714 | 120 | 0.2928 | 0.9990 | 1.0 | 1.0 | | 0.3113 | 9.2857 | 130 | 0.3021 | 0.9990 | 1.0 | 1.0 | | 0.3085 | 10.0 | 140 | 0.2962 | 0.9990 | 1.0 | 1.0 | | 0.2879 | 10.7143 | 150 | 0.2596 | 0.9990 | 1.0 | 1.0 | | 0.2958 | 11.4286 | 160 | 0.2409 | 0.9990 | 1.0 | 1.0 | | 0.2788 | 12.1429 | 170 | 0.2396 | 0.9990 | 1.0 | 1.0 | | 0.2565 | 12.8571 | 180 | 0.2076 | 0.9990 | 1.0 | 1.0 | | 0.2457 | 13.5714 | 190 | 0.2184 | 0.9990 | 1.0 | 1.0 | | 0.2328 | 14.2857 | 200 | 0.1962 | 0.9990 | 1.0 | 1.0 | | 0.1916 | 15.0 | 210 | 0.2003 | 0.9990 | 1.0 | 1.0 | | 0.3277 | 15.7143 | 220 | 0.1875 | 0.9990 | 1.0 | 1.0 | | 0.2053 | 16.4286 | 230 | 0.1718 | 0.9990 | 1.0 | 1.0 | | 0.2555 | 17.1429 | 240 | 0.1571 | 0.9990 | 1.0 | 1.0 | | 0.1863 | 17.8571 | 250 | 0.1546 | 0.9990 | 1.0 | 1.0 | | 0.1944 | 18.5714 | 260 | 0.1503 | 0.9990 | 1.0 | 1.0 | | 0.2652 | 19.2857 | 270 | 0.1456 | 0.9990 | 1.0 | 1.0 | | 0.1614 | 20.0 | 280 | 0.1442 | 0.9990 | 1.0 | 1.0 | | 0.139 | 20.7143 | 290 | 0.1413 | 0.9990 | 1.0 | 1.0 | | 0.1631 | 21.4286 | 300 | 0.1308 | 0.9990 | 1.0 | 1.0 | | 0.1988 | 22.1429 | 310 | 0.1256 | 0.9990 | 1.0 | 1.0 | | 0.1294 | 22.8571 | 320 | 0.1190 | 0.9990 | 1.0 | 1.0 | | 0.1174 | 23.5714 | 330 | 0.1185 | 0.9990 | 1.0 | 1.0 | | 0.1287 | 24.2857 | 340 | 0.1251 | 0.9990 | 1.0 | 1.0 | | 0.1322 | 25.0 | 350 | 0.1308 | 0.9990 | 1.0 | 1.0 | | 0.1667 | 25.7143 | 360 | 0.1215 | 0.9990 | 1.0 | 1.0 | | 0.1095 | 26.4286 | 370 | 0.1226 | 0.9990 | 1.0 | 1.0 | | 0.1992 | 27.1429 | 380 | 0.1331 | 0.9990 | 1.0 | 1.0 | | 0.1987 | 27.8571 | 390 | 0.1174 | 0.9990 | 1.0 | 1.0 | | 0.1587 | 28.5714 | 400 | 0.1162 | 0.9990 | 1.0 | 1.0 | | 0.1043 | 29.2857 | 410 | 0.1161 | 0.9990 | 1.0 | 1.0 | | 0.1073 | 30.0 | 420 | 0.1112 | 0.9990 | 1.0 | 1.0 | | 0.14 | 30.7143 | 430 | 0.1279 | 0.9990 | 1.0 | 1.0 | | 0.1183 | 31.4286 | 440 | 0.1361 | 0.9990 | 1.0 | 1.0 | | 0.1096 | 32.1429 | 450 | 0.1430 | 0.9990 | 1.0 | 1.0 | | 0.0957 | 32.8571 | 460 | 0.1397 | 0.9990 | 1.0 | 1.0 | | 0.1605 | 33.5714 | 470 | 0.1436 | 0.9990 | 1.0 | 1.0 | | 0.0837 | 34.2857 | 480 | 0.1163 | 0.9990 | 1.0 | 1.0 | | 0.1032 | 35.0 | 490 | 0.1223 | 0.9990 | 1.0 | 1.0 | | 0.1815 | 35.7143 | 500 | 0.0829 | 0.9990 | 1.0 | 1.0 | | 0.0762 | 36.4286 | 510 | 0.1128 | 0.9990 | 1.0 | 1.0 | | 0.0754 | 37.1429 | 520 | 0.1676 | 0.9990 | 1.0 | 1.0 | | 0.0883 | 37.8571 | 530 | 0.1639 | 0.9990 | 1.0 | 1.0 | | 0.0721 | 38.5714 | 540 | 0.1843 | 0.9990 | 1.0 | 1.0 | | 0.0703 | 39.2857 | 550 | 0.1493 | 0.9990 | 1.0 | 1.0 | | 0.0766 | 40.0 | 560 | 0.1616 | 0.9990 | 1.0 | 1.0 | | 0.0636 | 40.7143 | 570 | 0.1292 | 0.9990 | 1.0 | 1.0 | | 0.0771 | 41.4286 | 580 | 0.1087 | 0.9990 | 1.0 | 1.0 | | 0.1019 | 42.1429 | 590 | 0.1540 | 0.9990 | 1.0 | 1.0 | | 0.0734 | 42.8571 | 600 | 0.1639 | 0.9990 | 1.0 | 1.0 | | 0.0504 | 43.5714 | 610 | 0.1544 | 0.9990 | 1.0 | 1.0 | | 0.0606 | 44.2857 | 620 | 0.1403 | 0.9990 | 1.0 | 1.0 | | 0.0925 | 45.0 | 630 | 0.1664 | 0.9990 | 1.0 | 1.0 | | 0.0584 | 45.7143 | 640 | 0.1589 | 0.9990 | 1.0 | 1.0 | | 0.0662 | 46.4286 | 650 | 0.1696 | 0.9990 | 1.0 | 1.0 | | 0.0537 | 47.1429 | 660 | 0.1487 | 0.9990 | 1.0 | 1.0 | | 0.0772 | 47.8571 | 670 | 0.1688 | 0.9990 | 1.0 | 1.0 | | 0.0529 | 48.5714 | 680 | 0.1637 | 0.9990 | 1.0 | 1.0 | | 0.0538 | 49.2857 | 690 | 0.1573 | 0.9990 | 1.0 | 1.0 | | 0.045 | 50.0 | 700 | 0.1661 | 0.9990 | 1.0 | 1.0 | | 0.0588 | 50.7143 | 710 | 0.1824 | 0.9990 | 1.0 | 1.0 | | 0.0482 | 51.4286 | 720 | 0.1653 | 0.9990 | 1.0 | 1.0 | | 0.0811 | 52.1429 | 730 | 0.1579 | 0.9990 | 1.0 | 1.0 | | -0.0544 | 52.8571 | 740 | 0.1355 | 0.9990 | 1.0 | 1.0 | | 0.0463 | 53.5714 | 750 | 0.1514 | 0.9990 | 1.0 | 1.0 | | 0.0465 | 54.2857 | 760 | 0.1259 | 0.9990 | 1.0 | 1.0 | | 0.0798 | 55.0 | 770 | 0.1504 | 0.9990 | 1.0 | 1.0 | | -0.042 | 55.7143 | 780 | 0.1638 | 0.9990 | 1.0 | 1.0 | | -0.2192 | 56.4286 | 790 | 0.1666 | 0.9990 | 1.0 | 1.0 | | 0.0365 | 57.1429 | 800 | 0.1834 | 0.9990 | 1.0 | 1.0 | | 0.0765 | 57.8571 | 810 | 0.1456 | 0.9990 | 1.0 | 1.0 | | 0.0552 | 58.5714 | 820 | 0.1491 | 0.9990 | 1.0 | 1.0 | | 0.0375 | 59.2857 | 830 | 0.1515 | 0.9990 | 1.0 | 1.0 | | 0.0499 | 60.0 | 840 | 0.1082 | 0.9990 | 1.0 | 1.0 | | 0.0787 | 60.7143 | 850 | 0.1422 | 0.9990 | 1.0 | 1.0 | | 0.0562 | 61.4286 | 860 | 0.1337 | 0.9990 | 1.0 | 1.0 | | 0.0623 | 62.1429 | 870 | 0.1399 | 0.9990 | 1.0 | 1.0 | | 0.0966 | 62.8571 | 880 | 0.1412 | 0.9990 | 1.0 | 1.0 | | 0.0811 | 63.5714 | 890 | 0.1311 | 0.9990 | 1.0 | 1.0 | | 0.0496 | 64.2857 | 900 | 0.1591 | 0.9990 | 1.0 | 1.0 | | 0.0447 | 65.0 | 910 | 0.1587 | 0.9990 | 1.0 | 1.0 | | 0.0345 | 65.7143 | 920 | 0.1637 | 0.9990 | 1.0 | 1.0 | | 0.0637 | 66.4286 | 930 | 0.1427 | 0.9990 | 1.0 | 1.0 | | 0.0644 | 67.1429 | 940 | 0.1611 | 0.9990 | 1.0 | 1.0 | | 0.0779 | 67.8571 | 950 | 0.1566 | 0.9990 | 1.0 | 1.0 | | 0.0417 | 68.5714 | 960 | 0.1488 | 0.9990 | 1.0 | 1.0 | | 0.0969 | 69.2857 | 970 | 0.1577 | 0.9990 | 1.0 | 1.0 | | 0.0452 | 70.0 | 980 | 0.1166 | 0.9990 | 1.0 | 1.0 | | 0.0373 | 70.7143 | 990 | 0.1429 | 0.9990 | 1.0 | 1.0 | | 0.0438 | 71.4286 | 1000 | 0.1425 | 0.9990 | 1.0 | 1.0 | | 0.0606 | 72.1429 | 1010 | 0.1238 | 0.9990 | 1.0 | 1.0 | | 0.0389 | 72.8571 | 1020 | 0.1284 | 0.9990 | 1.0 | 1.0 | | 0.0402 | 73.5714 | 1030 | 0.1350 | 0.9990 | 1.0 | 1.0 | | 0.0349 | 74.2857 | 1040 | 0.1583 | 0.9990 | 1.0 | 1.0 | | 0.031 | 75.0 | 1050 | 0.1563 | 0.9990 | 1.0 | 1.0 | | 0.0501 | 75.7143 | 1060 | 0.1501 | 0.9990 | 1.0 | 1.0 | | 0.0412 | 76.4286 | 1070 | 0.1417 | 0.9990 | 1.0 | 1.0 | | 0.0532 | 77.1429 | 1080 | 0.1456 | 0.9990 | 1.0 | 1.0 | | 0.0378 | 77.8571 | 1090 | 0.1059 | 0.9990 | 1.0 | 1.0 | | -0.3927 | 78.5714 | 1100 | 0.1200 | 0.9990 | 1.0 | 1.0 | | 0.0499 | 79.2857 | 1110 | 0.1396 | 0.9990 | 1.0 | 1.0 | | 0.0501 | 80.0 | 1120 | 0.1277 | 0.9990 | 1.0 | 1.0 | | 0.0408 | 80.7143 | 1130 | 0.1494 | 0.9990 | 1.0 | 1.0 | | 0.0369 | 81.4286 | 1140 | 0.1394 | 0.9990 | 1.0 | 1.0 | | 0.0014 | 82.1429 | 1150 | 0.1306 | 0.9990 | 1.0 | 1.0 | | 0.0359 | 82.8571 | 1160 | 0.1557 | 0.9990 | 1.0 | 1.0 | | -0.4227 | 83.5714 | 1170 | 0.1380 | 0.9990 | 1.0 | 1.0 | | 0.0307 | 84.2857 | 1180 | 0.1351 | 0.9990 | 1.0 | 1.0 | | 0.0433 | 85.0 | 1190 | 0.1379 | 0.9990 | 1.0 | 1.0 | | 0.0407 | 85.7143 | 1200 | 0.1346 | 0.9990 | 1.0 | 1.0 | | 0.0247 | 86.4286 | 1210 | 0.1572 | 0.9990 | 1.0 | 1.0 | | 0.0498 | 87.1429 | 1220 | 0.1398 | 0.9990 | 1.0 | 1.0 | | 0.0399 | 87.8571 | 1230 | 0.1261 | 0.9990 | 1.0 | 1.0 | | 0.0354 | 88.5714 | 1240 | 0.0936 | 0.9990 | 1.0 | 1.0 | | 0.0336 | 89.2857 | 1250 | 0.1343 | 0.9990 | 1.0 | 1.0 | | 0.0291 | 90.0 | 1260 | 0.1410 | 0.9990 | 1.0 | 1.0 | | 0.0379 | 90.7143 | 1270 | 0.1520 | 0.9990 | 1.0 | 1.0 | | 0.0331 | 91.4286 | 1280 | 0.1490 | 0.9990 | 1.0 | 1.0 | | 0.034 | 92.1429 | 1290 | 0.1449 | 0.9990 | 1.0 | 1.0 | | 0.0315 | 92.8571 | 1300 | 0.1447 | 0.9990 | 1.0 | 1.0 | | 0.0474 | 93.5714 | 1310 | 0.0865 | 0.9990 | 1.0 | 1.0 | | 0.0295 | 94.2857 | 1320 | 0.1292 | 0.9990 | 1.0 | 1.0 | | 0.0347 | 95.0 | 1330 | 0.1097 | 0.9990 | 1.0 | 1.0 | | 0.0315 | 95.7143 | 1340 | 0.1264 | 0.9990 | 1.0 | 1.0 | | 0.0427 | 96.4286 | 1350 | 0.1458 | 0.9990 | 1.0 | 1.0 | | 0.0072 | 97.1429 | 1360 | 0.1381 | 0.9990 | 1.0 | 1.0 | | 0.0481 | 97.8571 | 1370 | 0.1120 | 0.9990 | 1.0 | 1.0 | | 0.0312 | 98.5714 | 1380 | 0.1331 | 0.9990 | 1.0 | 1.0 | | 0.0617 | 99.2857 | 1390 | 0.1368 | 0.9990 | 1.0 | 1.0 | | -0.4803 | 100.0 | 1400 | 0.0968 | 0.9990 | 1.0 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1