--- base_model: mistralai/Mistral-Nemo-Base-2407 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: qlora_outputs_1ep results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-Nemo-Base-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true adapter: qlora lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: datasets: - path: /home/austin/disk1/summaries_fixed.jsonl type: sharegpt dataset_prepared_path: last_run_prepared val_set_size: 0.01 output_dir: ./qlora_outputs_1ep sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: summarization-qlora wandb_entity: wandb_watch: wandb_name: actual_run1 wandb_log_model: #unsloth_cross_entropy_loss: true gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: false flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 25 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: ./deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: # - full_shard # - auto_wrap fsdp_config: # fsdp_limit_all_gathers: true # fsdp_activation_checkpointing: true # fsdp_sync_module_states: true # fsdp_offload_params: false # fsdp_use_orig_params: false # fsdp_cpu_ram_efficient_loading: false # fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer # fsdp_state_dict_type: FULL_STATE_DICT # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP special_tokens: pad_token: ```

# qlora_outputs_1ep This model is a fine-tuned version of [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0177 | 0.0014 | 1 | 1.6514 | | 1.623 | 0.2507 | 177 | 1.2010 | | 1.4373 | 0.5014 | 354 | 1.1926 | | 1.6839 | 0.7521 | 531 | 1.1865 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1