File size: 33,418 Bytes
195a7b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# Copyright (c) 2022, Tri Dao, [email protected].
# Licensed under the BSD 3-Clause License.
from __future__ import annotations
import math
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from einops import rearrange, repeat
from transformers import PretrainedConfig, PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutputWithPast
from .configuration_phi import PhiConfig
try:
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
from flash_attn.ops.fused_dense import FusedDense
except:
pad_input, unpad_input = None, None
FlashRotaryEmbedding = None
FlashSelfAttention, FlashCrossAttention = None, None
FusedDense = None
@dataclass
class InferenceParams:
"""Inference parameters passed to model to efficiently calculate
and store context during inference.
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
Args:
max_seqlen: Maximum sequence length.
max_batch_size: Maximum batch size.
seqlen_offset: Sequence length offset.
batch_size_offset: Batch size offset.
key_value_memory_dict: Key value memory dictionary.
lengths_per_sample: Lengths per sample.
"""
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
key_value_memory_dict: Dict[str, Any] = field(
default_factory=dict, metadata={"help": "Key value memory dictionary."}
)
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
class Embedding(nn.Module):
"""Token embedding with dropout."""
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.wte(input_ids)
hidden_states = self.drop(hidden_states)
return hidden_states
def _apply_rotary_emb(
x: torch.FloatTensor,
cos: torch.FloatTensor,
sin: torch.FloatTensor,
) -> torch.FloatTensor:
_, seqlen, _, _ = x.shape
_, rotary_dim = cos.shape
rotary_dim *= 2
x_rot = x[:, :, :, :rotary_dim]
x_pass = x[:, :, :, rotary_dim:]
x1, x2 = x_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
return torch.cat([x_rot, x_pass], axis=-1)
def _apply_rotary_emb_kv(
kv: torch.FloatTensor,
cos: torch.FloatTensor,
sin: torch.FloatTensor,
cos_k: Optional[torch.FloatTensor] = None,
sin_k: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
_, seqlen, _, _, _ = kv.shape
_, rotary_dim = cos.shape
rotary_dim *= 2
k_rot = kv[:, :, 0, :, :rotary_dim]
k_pass = kv[:, :, 0, :, rotary_dim:]
k1, k2 = k_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
return torch.cat(
[
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
kv[:, :, 1:2, :, :],
],
axis=2,
)
def _apply_rotary_emb_qkv(
qkv: torch.FloatTensor,
cos: torch.FloatTensor,
sin: torch.FloatTensor,
cos_k: Optional[torch.FloatTensor] = None,
sin_k: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
_, seqlen, _, _, _ = qkv.shape
_, rotary_dim = cos.shape
rotary_dim *= 2
q_rot = qkv[:, :, 0, :, :rotary_dim]
q_pass = qkv[:, :, 0, :, rotary_dim:]
k_rot = qkv[:, :, 1, :, :rotary_dim]
k_pass = qkv[:, :, 1, :, rotary_dim:]
q1, q2 = q_rot.chunk(2, dim=-1)
k1, k2 = k_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
return torch.cat(
[
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
qkv[:, :, 2:3, :, :],
],
axis=2,
)
class RotaryEmbedding(nn.Module):
"""Rotary positional embedding (RoPE).
Reference:
RoFormer: Enhanced Transformer with Rotary Position Embedding.
https://arxiv.org/pdf/2104.09864.pdf.
"""
def __init__(
self,
dim: int,
base: int = 10000,
scale_base: Optional[float] = None,
pos_idx_in_fp32: bool = True,
max_position_embeddings: int = 2048,
device: Optional[str] = None,
**kwargs,
) -> None:
super().__init__()
if scale_base is not None:
raise NotImplementedError
self.dim = dim
self.base = float(base)
self.scale_base = scale_base
self.pos_idx_in_fp32 = pos_idx_in_fp32
self.max_position_embeddings = max_position_embeddings
self.device = device
# Generate and save the inverse frequency buffer (non-trainable)
inv_freq = self._compute_inv_freq(device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Generate and save the scale buffer (non-trainable)
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
if scale_base is not None
else None
)
self.register_buffer("scale", scale, persistent=False)
# Initialize cached attributes since ONNX can't rely on dynamic initialization
self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32)
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
def _update_cos_sin_cache(
self,
seqlen: int,
device: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
self._seq_len_cached = seqlen
# fp32 is preferred since the output of `torch.arange` can be quite large
# and bf16 would lose a lot of precision
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
# Force the scale multiplication to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(
self,
qkv: torch.Tensor,
kv: Optional[torch.Tensor] = None,
seqlen_offset: int = 0,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
if (
self._seq_len_cached < qkv.shape[1] + seqlen_offset
or self._cos_cached.device != qkv.device
or self._cos_cached.dtype != qkv.dtype
or (self.training and self._cos_cached.is_inference())
):
self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
if kv is None:
return _apply_rotary_emb_qkv(
qkv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
)
else:
q = _apply_rotary_emb(
qkv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
)
kv = _apply_rotary_emb_kv(
kv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
)
return q, kv
class MLP(nn.Module):
"""Multi-Layer Perceptron.
Reference:
Attention Is All You Need.
https://arxiv.org/pdf/1706.03762.pdf.
"""
def __init__(
self,
config: PretrainedConfig,
n_inner: Optional[int] = None,
act_fn: Optional[str] = None,
) -> None:
super().__init__()
act_fn = config.activation_function if act_fn is None else act_fn
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
self.fc1 = nn.Linear(config.n_embd, n_inner)
self.fc2 = nn.Linear(n_inner, config.n_embd)
self.act = ACT2FN[act_fn]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class SelfAttention(nn.Module):
"""Self-attention layer (compatible with PyTorch).
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
"""
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
qkv: torch.FloatTensor,
causal: bool = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
q, k, v = qkv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
causal = self.causal if causal is None else causal
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
# using float16, which might lead to overflow
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
class CrossAttention(nn.Module):
"""Cross-attention layer (compatible with PyTorch).
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
"""
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
q: torch.FloatTensor,
kv: torch.FloatTensor,
causal: bool = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
if kv.shape[3] != q.shape[2]:
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
causal = self.causal if causal is None else causal
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
# using float16, which might lead to overflow
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen_k),
-10000.0,
dtype=scores.dtype,
device=scores.device,
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
causal_mask = cols > rows + seqlen_k - seqlen_q
scores = scores.masked_fill(causal_mask, -10000.0)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
def _find_mha_dims(
config: PretrainedConfig,
n_head: Optional[int] = None,
n_head_kv: Optional[int] = None,
head_dim: Optional[int] = None,
) -> Tuple[int, int]:
if n_head is None and head_dim is None:
head_dim = config.n_embd // config.n_head
n_head = config.n_head
elif n_head is None or head_dim is None:
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
if n_head_kv is None:
n_head_kv = getattr(config, "n_head_kv", None) or n_head
return n_head, n_head_kv, head_dim
def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
num_heads, head_dim = kv.shape[-2:]
if layer_idx not in inference_params.key_value_memory_dict:
inference_params.key_value_memory_dict[layer_idx] = torch.empty(
inference_params.max_batch_size,
inference_params.max_seqlen,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
)
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = inference_params.seqlen_offset
sequence_end = sequence_start + kv.shape[1]
# When the current sequence length is equal to or larger than the maximum sequence length,
# we need to concatenate the current `kv` with the cached `kv` to expand its length
if sequence_end >= inference_params.max_seqlen:
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate((inference_params.key_value_memory_dict[layer_idx], kv), dim=1)
inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...] = kv
kv = inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, :sequence_end, ...]
return kv
class MHA(nn.Module):
"""Multi-head attention layer."""
def __init__(
self,
config: PretrainedConfig,
dtype: Optional[torch.dtype] = None,
device: Optional[str] = None,
rotary_dim: Optional[int] = None,
rotary_base: float = 10000.0,
rotary_scale_base: Optional[float] = None,
n_head: Optional[int] = None,
n_head_kv: Optional[int] = None,
head_dim: Optional[int] = None,
bias: bool = True,
causal: bool = True,
softmax_scale: Optional[float] = None,
layer_idx: Optional[int] = None,
return_residual: bool = False,
checkpointing: bool = False,
) -> None:
super().__init__()
# Rotary embedding
self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
if self.rotary_dim > 0:
rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
if rotary_cls is None:
rotary_cls = RotaryEmbedding
rotary_kwargs = {}
if rotary_cls is RotaryEmbedding:
rotary_kwargs["max_position_embeddings"] = config.n_positions
self.rotary_emb = rotary_cls(
self.rotary_dim,
base=rotary_base,
scale_base=rotary_scale_base,
device=device,
**rotary_kwargs,
)
# MLP
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
)
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
hidden_size = config.n_embd
linear_cls = FusedDense if config.fused_dense else nn.Linear
if linear_cls is None:
linear_cls = nn.Linear
self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
# Attention
attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
if attn_cls is None:
attn_cls = SelfAttention
cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
if cross_attn_cls is None:
cross_attn_cls = CrossAttention
self.inner_attn = attn_cls(
causal=causal,
softmax_scale=softmax_scale,
attention_dropout=config.attn_pdrop,
)
self.inner_cross_attn = cross_attn_cls(
causal=causal,
softmax_scale=softmax_scale,
attention_dropout=config.attn_pdrop,
)
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
self.layer_idx = layer_idx
self.return_residual = return_residual
self.checkpointing = checkpointing
def _forward_self_attn(
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
) -> torch.FloatTensor:
qkv = self.Wqkv(x)
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
if self.rotary_dim > 0:
qkv = self.rotary_emb(qkv)
if self.flash_attn:
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
cu_seqlens, max_seqlen = None, None
if key_padding_mask is not None:
# If `key_padding_mask` is supplied, we need to unpad the input and retrieve
# the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
if self.checkpointing:
attn_output = torch.utils.checkpoint.checkpoint(
self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
)
else:
attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
# If `key_padding_mask` is supplied, we need to pad the output back to the original shape
return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
def _forward_cross_attn(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams],
key_padding_mask: Optional[torch.BoolTensor],
) -> torch.FloatTensor:
batch_size = x.shape[0]
qkv = self.Wqkv(x)
q = qkv[..., : self.n_head * self.head_dim]
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = qkv[..., self.n_head * self.head_dim :]
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
causal = None if seqlen_offset == 0 else False
if self.rotary_dim > 0:
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
if past_key_values is not None:
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
if self.flash_attn:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
None,
None,
None,
None,
)
if key_padding_mask is not None:
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
if seqlen_q == 1:
key_padding_mask = torch.ones(batch_size, 1, device=q.device)
elif seqlen_q != seqlen_k:
key_padding_mask = key_padding_mask[:, -seqlen_q:]
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
if self.checkpointing:
attn_output = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn,
q,
kv,
causal=causal,
cu_seqlens=cu_seqlens_q,
max_seqlen=max_seqlen_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_k=max_seqlen_k,
)
else:
attn_output = self.inner_cross_attn(
q,
kv,
causal=causal,
cu_seqlens=cu_seqlens_q,
max_seqlen=max_seqlen_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_k=max_seqlen_k,
)
return (
pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
if key_padding_mask is not None
else attn_output
)
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(
self.inner_cross_attn,
q,
kv,
key_padding_mask=key_padding_mask,
causal=causal,
)
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
def forward(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
if attention_mask is not None:
attention_mask = attention_mask.bool()
else:
attention_mask = None
# MHA
if self.n_head == self.n_head_kv:
if past_key_values is None:
# If `past_key_values` are not supplied, we run self-attention
attn_output = self._forward_self_attn(x, attention_mask)
else:
# If `past_key_values` are supplied, it means that we might have cached values and
# could take advantage of cross-attention
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
# MQA / GQA
else:
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
# because `q` and `kv` lengths might be different
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
output = rearrange(attn_output, "... h d -> ... (h d)")
output = self.out_proj(output)
return output if not self.return_residual else (output, x)
class ParallelBlock(nn.Module):
"""Parallel block.
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
"""
def __init__(
self,
config: PretrainedConfig,
block_idx: Optional[int] = None,
) -> None:
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.block_idx = block_idx
self.mixer = MHA(config, layer_idx=block_idx)
self.mlp = MLP(config)
def forward(
self,
hidden_states: torch.FloatTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(
hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
if isinstance(attn_outputs, tuple):
attn_outputs = attn_outputs[0]
attn_outputs = self.resid_dropout(attn_outputs)
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
hidden_states = attn_outputs + feed_forward_hidden_states + residual
return hidden_states
class CausalLMHead(nn.Module):
"""Causal Language Modeling head.
Reference:
Improving Language Understanding by Generative Pre-Training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
"""
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
logits = self.linear(hidden_states).to(torch.float32)
return logits
class CausalLMLoss(nn.Module):
"""Causal Language Modeling loss.
Reference:
Improving Language Understanding by Generative Pre-Training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
"""
def __init__(self, shift_labels: bool = True) -> None:
super().__init__()
self.shift_labels = shift_labels
self.loss_fct = nn.CrossEntropyLoss()
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
if self.shift_labels:
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
return loss
class PhiPreTrainedModel(PreTrainedModel):
"""Phi pre-trained model."""
config_class = PhiConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = False
_no_split_modules = ["ParallelBlock"]
def __init__(self, *inputs, **kwargs) -> None:
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module) -> None:
if isinstance(module, (nn.Linear,)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
**kwargs,
) -> Dict[str, Any]:
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
past_key_values = InferenceParams(
max_seqlen=self.config.n_positions,
max_batch_size=input_ids.shape[0],
seqlen_offset=0,
batch_size_offset=0,
key_value_memory_dict={},
lengths_per_sample=None,
)
else:
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
past_key_values.seqlen_offset = input_ids.shape[1] - 1
input_ids = input_ids[:, -1].unsqueeze(-1)
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
}
class PhiModel(PhiPreTrainedModel):
"""Phi model."""
_keys_to_ignore_on_load_missing = [""]
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
def __init__(self, config: PhiConfig) -> None:
super().__init__(config)
self.embd = Embedding(config)
self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)])
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embd.wte
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.embd.wte = new_embeddings
def forward(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
hidden_states = self.embd(input_ids)
for layer in self.h:
hidden_states = layer(
hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
return hidden_states
class PhiForCausalLM(PhiPreTrainedModel):
"""Phi for Causal Language Modeling."""
_keys_to_ignore_on_load_missing = [""]
_keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
def __init__(self, config: PhiConfig) -> None:
super().__init__(config)
self.transformer = PhiModel(config)
self.lm_head = CausalLMHead(config)
self.loss = CausalLMLoss()
self.post_init()
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head.linear
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.lm_head.linear = new_embeddings
def forward(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs,
) -> CausalLMOutputWithPast:
hidden_states = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask)
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss(lm_logits, labels)
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|