File size: 1,719 Bytes
3d98f63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

---

language:
- ja
tags:
- causal-lm
- not-for-all-audiences
- nsfw
pipeline_tag: text-generation

---

[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)


# QuantFactory/Berghof-NSFW-7B-GGUF
This is quantized version of [Elizezen/Berghof-NSFW-7B](https://huggingface.co/Elizezen/Berghof-NSFW-7B) created using llama.cpp

# Original Model Card


# Berghof NSFW 7B

<img src="https://huggingface.co/Elizezen/Berghof-vanilla-7B/resolve/main/OIG1%20(2).jpg" alt="drawing" style="width:512px;"/>

## Model Description

多分これが一番強いと思います

## Usage

Ensure you are using Transformers 4.34.0 or newer.

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Elizezen/Berghof-NSFW-7B")
model = AutoModelForCausalLM.from_pretrained(
  "Elizezen/Berghof-NSFW-7B",
  torch_dtype="auto",
)
model.eval()

if torch.cuda.is_available():
    model = model.to("cuda")

input_ids = tokenizer.encode(
    "吾輩は猫である。名前はまだない",, 
    add_special_tokens=True, 
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=512,
    temperature=1,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)
```

### Intended Use

The model is mainly intended to be used for generating novels. It may not be so capable with instruction-based responses.