File size: 1,719 Bytes
3d98f63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
language:
- ja
tags:
- causal-lm
- not-for-all-audiences
- nsfw
pipeline_tag: text-generation
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/Berghof-NSFW-7B-GGUF
This is quantized version of [Elizezen/Berghof-NSFW-7B](https://huggingface.co/Elizezen/Berghof-NSFW-7B) created using llama.cpp
# Original Model Card
# Berghof NSFW 7B
<img src="https://huggingface.co/Elizezen/Berghof-vanilla-7B/resolve/main/OIG1%20(2).jpg" alt="drawing" style="width:512px;"/>
## Model Description
多分これが一番強いと思います
## Usage
Ensure you are using Transformers 4.34.0 or newer.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Elizezen/Berghof-NSFW-7B")
model = AutoModelForCausalLM.from_pretrained(
"Elizezen/Berghof-NSFW-7B",
torch_dtype="auto",
)
model.eval()
if torch.cuda.is_available():
model = model.to("cuda")
input_ids = tokenizer.encode(
"吾輩は猫である。名前はまだない",,
add_special_tokens=True,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=512,
temperature=1,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)
```
### Intended Use
The model is mainly intended to be used for generating novels. It may not be so capable with instruction-based responses.
|