GGUF
Inference Endpoints
conversational
aashish1904 commited on
Commit
a878ffa
1 Parent(s): 1f64ce2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: apache-2.0
5
+ datasets:
6
+ - arcee-ai/EvolKit-20k
7
+ base_model:
8
+ - Qwen/Qwen2.5-1.5B
9
+
10
+ ---
11
+
12
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
13
+
14
+
15
+ # QuantFactory/EVA-D-Qwen2.5-1.5B-v0.0-GGUF
16
+ This is quantized version of [EVA-UNIT-01/EVA-D-Qwen2.5-1.5B-v0.0](https://huggingface.co/EVA-UNIT-01/EVA-D-Qwen2.5-1.5B-v0.0) created using llama.cpp
17
+
18
+ # Original Model Card
19
+
20
+ # EVA-D Qwen2.5-1.5B v0.0
21
+
22
+ <p>
23
+ An experimental online logit distillation of EVA-Qwen2.5-14B-v0.1 into Qwen2.5-1.5B. Should work as a RP/storywriting specialist, but don't expect superb performance from it, due to it's small size. All in all, it was a fun experiment to do.<br>
24
+ </p>
25
+
26
+ <p>Note: using quantized KV cache with Qwen2.5 <b>is not recommended</b> and can lead to degraded output quality. On the other hand, Qwen's KV cache is already light enough, so using f16 for it shouldn't be problematic.</p>
27
+
28
+ <p>
29
+ <p>Prompt format is ChatML.</p><br>
30
+ <h3>Recommended sampler values:</h3>
31
+ <ul>
32
+ <li>Temperature: 1</li>
33
+ <li>Min-P: 0.02</li>
34
+ </ul>
35
+
36
+ <h3>Recommended SillyTavern presets (via CalamitousFelicitousness):</h3>
37
+
38
+ - [Context](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Context.json)
39
+ - [Instruct and System Prompt](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Instruct.json)
40
+ </p>
41
+
42
+ <p>
43
+ <br>
44
+ <h3>
45
+ Distillation data:
46
+ </h3>
47
+ <ul>
48
+ <li>Arcee.AI's <a href=https://huggingface.co/datasets/arcee-ai/EvolKit-20k>EvolKit-20k</a> dataset, which is specifically made for knowledge distillation purposes.</li>
49
+ </ul>
50
+ <h3>
51
+ Training time and hardware:
52
+ </h3>
53
+ <ul><li>1.8 hours on 8xA100 SXM, provided by Garg</li></ul><br>
54
+ </p>
55
+ <p>Model was trained by Kearm and Auri.</p>
56
+ <h4>Special thanks:</h4><ul>
57
+ <li><b>to Garg for generously providing 8xA100 SXM node for this experiment!</b></li>
58
+ <li>to Arcee.AI for creating DistillKit and EvolKit-20k dataset, which were used to create this model.</li>
59
+ <li>and to Allura-org for support and feedback on EVA models.</li></ul>