File size: 37,018 Bytes
4afa962 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
---
language:
- en
license: apache-2.0
license_link: https://huggingface.co/flowaicom/Flow-Judge-v0.1/resolve/main/LICENSE
tags:
- lm-judge
- evaluation
- nlp
datasets:
- flowaicom/Flow-Judge-v0.1-binary-heldout
- flowaicom/Flow-Judge-v0.1-3-likert-heldout
- flowaicom/Flow-Judge-v0.1-5-likert-heldout
pipeline_tag: text-generation
library_name: transformers
metrics:
- accuracy
- f1
- precision
- recall
- pearsonr
- spearmanr
- kendall-tau
base_model:
- microsoft/Phi-3.5-mini-instruct
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/Flow-Judge-v0.1-GGUF
This is quantized version of [flowaicom/Flow-Judge-v0.1](https://huggingface.co/flowaicom/Flow-Judge-v0.1) created using llama.cpp
# Original Model Card
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63368577d184e6b53c50e6d0/6kSJKgPh2pDh4tA-Ky0xW.png" alt="Centered image">
</p>
<p align="center">🚀 <a href="https://www.flow-ai.com/judge">Flow Judge</a> | 📄 <a href="https://www.flow-ai.com/blog/flow-judge">Technical report</a> | 💻 <a href="https://github.com/flowaicom/flow-judge">flow-judge</a></p>
## Model Summary
Flow-Judge-v0.1 is a compact yet powerful 3.8B model that offers customizable LLM system evaluations across various fields. The model inherits it's architecture from Phi-3.5-mini instruct model which enables Flow-Judge to deliver high-quality results while maintaining a small footprint. Despite its smaller size, it achieves performance comparable to larger models in both held-out and out-of-domain benchmarks. Flow-Judge-v0.1 supports multiple scoring scales, provides qualitative feedback, and generates structured evaluation outputs. Trained on a smaller synthetic dataset, it represents an efficient approach to AI development. Released under the Apache 2.0 license, Flow Judge is an open and accessible model suitable for developers and companies seeking cost-effective and rapid evaluations using custom rubrics.
__Quantized weights__
- [flowaicom/Flow-Judge-v0.1-AWQ](https://huggingface.co/flowaicom/Flow-Judge-v0.1-AWQ)
- [flowaicom/Flow-Judge-v0.1-GGUF](https://huggingface.co/flowaicom/Flow-Judge-v0.1-GGUF)
__Quickstart__
- [Quickstart](https://github.com/flowaicom/flow-judge/examples/1_quickstart.ipynb)
## Intended Use Case
Flow Judge is intended to be used on custom LLM system evaluation tasks.
- Customizable evaluations: Users can define their own evaluation criteria and rubrics, tailoring Flow Judge to their specific needs and requirements. This flexibility allows for the creation of highly targeted assessments that accurately measure performance of their LLM system
- Flow Judge supports three different scoring scales:
- Pass/fail: Suitable for binary assessments, such as determining whether a piece of text meets a specific standard or contains errors.
- 3-Likert: Allows for more granular evaluations, with scores ranging from negative to neutral to positive. Useful for assessing the overall quality or sentiment of a piece of text.
- 5-Likert: Provides an even more nuanced assessment, with scores ranging from strongly negative to strongly positive, enabling users to capture subtle differences in quality or sentiment.
- Easy to interpret results:
- Flow Judge produces structured evaluations with `<feedback>` and `<score>` tags.
- Qualitative feedback: Flow Judge detects errors and grades outputs and provides qualitative feedback that explains its reasoning for assigning a particular score from the rubric while highlighting problematic parts of the responses.
- Score: Based on a grading rubric Flow Judge will return a numerical score on binary, likert-3 or likert-5 scale.
## Training
### Model
Flow Judge is based on the Phi-3.5-mini architecture, and the base model checkpoint used is specifically its instruct version. The model uses the same tokenizer, supports MQA and Flash Attention 2, and has weights in bfloat16 precision. However, post-finetuning, the model's support for languages and long context lengths has not been fully tested. Due to specialized Supervised Fine-Tuning (SFT), Flow Judge might show different benchmark results and support a maximum context length of 8192, shorter than the base model's.
### Training Datasets
Flow-Judge-v0.1 has been trained on synthetically generated datasets. The construction of training datasets for Flow Judge involves a multi-step process:
1. Manually curating seed rubrics to serve as a foundation
2. Synthetically generating domain-adapted metrics and rubrics for various domains
3. Synthetically generating training instances with multiple inputs, such as user queries and contextual information
4. Employing a dual-evaluation strategy with consensus to ensure quality and consistency
This process creates a comprehensive and diverse set of training instances that enable accurate, domain-specific evaluations of LLM systems in generative AI products while minimizing human intervention.
Read more about the dataset construction from [here](https://www.flow-ai.com/blog/flow-judge#dataset-construction)
### Fine-tuning
For fine-tuning we used Axolotl's preprocessing to ensure input training data is consistent. We then conducted supervised fine-tuning based on microsoft/Phi-3.5-mini-instruct using RSLoRa. More detailed information about the fine-tuning process is provided in our [technical report](https://www.flow-ai.com/blog/flow-judge#fine-tuning).
## Usage
### Prompt format
#### Prompt template with inputs
```text
# GOAL
Your job is to evaluate a task carried out by an AI system powered by a large language model.
You will be provided with the inputs and output of the task, as well as the evaluation criteria and scoring rubric. Your task is to evaluate the output of the AI system based on the evaluation criteria and scoring rubric provided.
# INPUT
Below are the inputs required for performing the task:
<inputs>
{INPUTS}
</inputs>
# OUTPUT
Below is the output of the task:
<output>
{OUTPUT}
</output>
# EVALUATION CRITERIA AND SCORING RUBRIC
Here are the evaluation criteria and the rubric that you need to use for evaluating the task:
<evaluation_criteria>
{EVALUATION_CRITERIA}
</evaluation_criteria>
<scoring_rubric>
{RUBRIC}
</scoring_rubric>
# INSTRUCTIONS FOR THE EVALUATION
1. Understand the task and criteria: Familiarize yourself with the task to be evaluated. Review the evaluation criteria and scoring rubric to understand the different levels of performance and the descriptions for each score.
2. Review the inputs and output: Look at the inputs provided for the task. Examine the output generated from completing the task.
3. Compare output to score descriptions: Compare the output against the criteria and score descriptions in the scoring rubric. For each criterion,decide which description best matches the output.
4. After comparing the output to the score descriptions, pay attention to the small details that might impact the final score that you assign. Sometimes a small difference can dictate the final score.
5. Write verbal feedback justifying your evaluation that includes a detailed rationale, referring to specific aspects of the output and comparing them to the rubric.
6. Assign a final score based on the scoring rubric.
## FORMAT FOR THE EVALUATION
- Write the verbal feedback inside <feedback> tags without any additional surrounding text.
- Write the numeric score inside <score> tags, without any additional surrounding text and always after the feedback.
Please accurately evaluate the task. Strictly adhere to the evaluation criteria and rubric.
```
#### Prompt template without inputs
```text
# GOAL
Your job is to evaluate a task carried out by an AI system powered by a large language model.
You will be provided the output of the task, as well as the evaluation criteria and scoring rubric. Your task is to evaluate the output of the AI system based on the evaluation criteria and scoring rubric provided.
# OUTPUT
Below is the output of the task:
<output>
{OUTPUT}
</output>
# EVALUATION CRITERIA AND SCORING RUBRIC
Here are the evaluation criteria and the rubric that you need to use for evaluating the task:
<evaluation_criteria>
{EVALUATION_CRITERIA}
</evaluation_criteria>
<scoring_rubric>
{RUBRIC}
</scoring_rubric>
# INSTRUCTIONS FOR THE EVALUATION
1. Understand the task and criteria: Familiarize yourself with the task to be evaluated. Review the evaluation criteria and scoring rubric to understand the different levels of performance and the descriptions for each score.
2. Review the output: Examine the output generated from completing the task.
3. Compare output to score descriptions: Compare the output against the criteria and score descriptions in the scoring rubric. For each criterion,decide which description best matches the output.
4. After comparing the output to the score descriptions, pay attention to the small details that might impact the final score that you assign. Sometimes a small difference can dictate the final score.
5. Write verbal feedback justifying your evaluation that includes a detailed rationale, referring to specific aspects of the output and comparing them to the rubric.
6. Assign a final score based on the scoring rubric.
## FORMAT FOR THE EVALUATION
- Write the verbal feedback inside <feedback> tags without any additional surrounding text.
- Write the numeric score inside <score> tags, without any additional surrounding text and always after the feedback.
Please accurately evaluate the task. Strictly adhere to the evaluation criteria and rubric.
```
#### Formatted prompt example with inputs
```text
# GOAL
Your job is to evaluate a task carried out by an AI system powered by a large language model.
You will be provided with the inputs and output of the task, as well as the evaluation criteria and scoring rubric. Your task is to evaluate the output of the AI system based on the evaluation criteria and scoring rubric provided.
# INPUT/s
Below are the inputs required for performing the task:
<inputs>
<customer_query>
Subject: Issues with recent order #12345
Hello,
I recently received my order #12345, but I'm having a few problems:
1. The blue t-shirt I ordered is actually green. Can I exchange it?
2. The phone case doesn't fit my iPhone 13 Pro Max. The website said it was compatible.
3. I was charged for express shipping, but it took over a week to arrive. Can I get a refund on the shipping cost?
Please let me know how we can resolve these issues. I've been a loyal customer for years and this is the first time I've had problems like this.
Thank you,
Jane Smith
</customer_query>
</inputs>
# OUTPUT
Below is the output of the task:
<output>
Dear Jane Smith,
Thank you for reaching out about the issues with your recent order #12345. We sincerely apologize for the inconvenience you've experienced. Let me address each of your concerns:
1. T-shirt color discrepancy: We're sorry about the mix-up with the t-shirt color. We'd be happy to exchange it for the correct blue t-shirt. I'll send you a prepaid return label for the green shirt, and we'll ship out the blue one as soon as we receive the return.
2. Phone case compatibility: We apologize for the confusion regarding the phone case compatibility. Our website information should have been more accurate. We'll gladly accept a return of the incompatible case and issue a full refund for it. Additionally, I can recommend a case that will fit your iPhone 13 Pro Max if you're interested.
3. Shipping charge: You're absolutely right about the shipping charge. Since the delivery didn't meet our express shipping standards, we will refund the entire shipping cost to your original payment method. This refund should process within 3-5 business days.
To initiate these resolutions, please reply to this email confirming that you'd like to proceed with the t-shirt exchange and phone case return. Once confirmed, I'll send you the necessary return labels and process the shipping refund immediately.
We truly value your loyalty as a long-time customer and sincerely regret that you've encountered these issues. Rest assured, we're taking steps to prevent similar problems in the future. As a gesture of goodwill, we'd like to offer you a 20% discount on your next order.
If you have any further questions or concerns, please don't hesitate to reach out. We're here to ensure your complete satisfaction.
Best regards,
Alex Johnson
Customer Service Representative
</output>
# EVALUATION CRITERIA AND SCORING RUBRIC
Here are the evaluation criteria and the rubric that you need to use for evaluating the task:
<evaluation_criteria>
How well the response addresses the specific issues raised in the customer's query?
</evaluation_criteria>
<scoring_rubric>
- Score 1: The response completely fails to address the customer's needs and ignores the specific issues raised.
- Score 2: The response barely addresses the customer's query and misses most of the specific issues raised.
- Score 3: The response partially addresses the customer's query, touching on some of the specific issues but leaving others unaddressed.
- Score 4: The response adequately addresses most aspects of the customer's query and the specific issues raised.
- Score 5: The response fully and comprehensively addresses all aspects of the customer's query and all specific issues raised in a highly satisfactory manner.
</scoring_rubric>
# INSTRUCTIONS FOR THE EVALUATION
1. Understand the task and criteria: Familiarize yourself with the task to be evaluated. Review the evaluation criteria and scoring rubric to understand the different levels of performance and the descriptions for each score.
2. Review the inputs and output: Look at the inputs provided for the task. Examine the output generated from completing the task.
3. Compare output to score descriptions: Compare the output against the criteria and score descriptions in the scoring rubric. For each criterion,decide which description best matches the output.
4. After comparing the output to the score descriptions, pay attention to the small details that might impact the final score that you assign. Sometimes a small difference can dictate the final score.
5. Write verbal feedback justifying your evaluation that includes a detailed rationale, referring to specific aspects of the output and comparing them to the rubric.
6. Assign a final score based on the scoring rubric.
## FORMAT FOR THE EVALUATION
- Write the verbal feedback inside <feedback> tags without any additional surrounding text.
- Write the numeric score inside <score> tags, without any additional surrounding text and always after the feedback.
Please accurately evaluate the task. Strictly adhere to the evaluation criteria and rubric.
```
>Note that inputs and output are formatted with XML tags. See [flow-judge](https://github.com/flowaicom/flow-judge) repository formatting functions for more details.
### Inference
Evaluations can easily be run using our [flow-judge](https://github.com/flowaicom/flow-judge) library. It currently supports both Transformers and vllm engine.
To run Flow Judge efficiently, ensure your hardware meets the following requirements:
- Modern GPU with at least 4 GB VRAM (e.g., NVIDIA RTX series)
- Minimum of 8 GB of system memory
- At least 10GB of free storage for model files and dependencies.
## Evaluation
### Held-out test sets
<table border="1" cellpadding="10" cellspacing="0" style="border-collapse: collapse; width: auto;">
<thead>
<tr>
<th rowspan="2" style="text-align: left;">Evaluator</th>
<th colspan="3" style="text-align: center;">Pass / Fail Held-out Test set</th>
</tr>
<tr>
<th style="text-align: center;">Precision</th>
<th style="text-align: center;">Recall</th>
<th style="text-align: center;">F1</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left;">microsoft/Phi-3.5-mini-instruct</td>
<td style="text-align: center;">0.685</td>
<td style="text-align: center;"><strong>1.000</strong></td>
<td style="text-align: center;">0.813</td>
</tr>
<tr>
<td style="text-align: left;">meta-llama/Meta-Llama-3.1-8B-Instruct</td>
<td style="text-align: center;"><u>0.870</u></td>
<td style="text-align: center;">0.982</td>
<td style="text-align: center;"><u>0.923</u></td>
</tr>
<tr>
<td style="text-align: left;">mistralai/Mistral-Nemo-Instruct-2407</td>
<td style="text-align: center;">0.709</td>
<td style="text-align: center;"><u>0.994</u></td>
<td style="text-align: center;">0.827</td>
</tr>
<tr>
<td style="text-align: left;">gpt-4o-mini</td>
<td style="text-align: center;">0.834</td>
<td style="text-align: center;">1.000</td>
<td style="text-align: center;">0.910</td>
</tr>
<tr>
<td style="text-align: left;">flowaicom/Flow-Judge-v0.1</td>
<td style="text-align: center;"><strong>0.940</strong></td>
<td style="text-align: center;">0.972</td>
<td style="text-align: center;"><strong>0.955</strong></td>
</tr>
</tbody>
</table>
<table border="1" cellpadding="10" cellspacing="0" style="border-collapse: collapse; width: auto;">
<thead>
<tr>
<th rowspan="2" style="text-align: left;">Evaluator</th>
<th colspan="3" style="text-align: center;">3-Likert Held-out Test set</th>
<th colspan="3" style="text-align: center;">5-Likert Held-out Test set</th>
</tr>
<tr>
<th style="text-align: center;">pearsonr</th>
<th style="text-align: center;">spearmanr</th>
<th style="text-align: center;">kendall-tau</th>
<th style="text-align: center;">pearsonr</th>
<th style="text-align: center;">spearmanr</th>
<th style="text-align: center;">kendall-tau</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left;">microsoft/Phi-3.5-mini-instruct</td>
<td style="text-align: center;">0.756</td>
<td style="text-align: center;">0.749</td>
<td style="text-align: center;">0.695</td>
<td style="text-align: center;">0.808</td>
<td style="text-align: center;">0.819</td>
<td style="text-align: center;">0.739</td>
</tr>
<tr>
<td style="text-align: left;">prometheus-eval/prometheus-7b-v2.0*</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;"><u>0.910</u></td>
<td style="text-align: center;"><u>0.908</u></td>
<td style="text-align: center;"><u>0.838</u></td>
</tr>
<tr>
<td style="text-align: left;">meta-llama/Meta-Llama-3.1-8B-Instruct</td>
<td style="text-align: center;"><u>0.836</u></td>
<td style="text-align: center;"><u>0.833</u></td>
<td style="text-align: center;"><u>0.789</u></td>
<td style="text-align: center;">0.854</td>
<td style="text-align: center;">0.868</td>
<td style="text-align: center;">0.791</td>
</tr>
<tr>
<td style="text-align: left;">mistralai/Mistral-Nemo-Instruct-2407</td>
<td style="text-align: center;">0.813</td>
<td style="text-align: center;">0.807</td>
<td style="text-align: center;">0.758</td>
<td style="text-align: center;">0.870</td>
<td style="text-align: center;">0.867</td>
<td style="text-align: center;">0.789</td>
</tr>
<tr>
<td style="text-align: left;">gpt-4o-mini</td>
<td style="text-align: center;">0.890</td>
<td style="text-align: center;">0.888</td>
<td style="text-align: center;">0.851</td>
<td style="text-align: center;">0.923</td>
<td style="text-align: center;">0.923</td>
<td style="text-align: center;">0.864</td>
</tr>
<tr>
<td style="text-align: left;">flowaicom/Flow-Judge-v0.1</td>
<td style="text-align: center;"><strong>0.888</strong></td>
<td style="text-align: center;"><strong>0.888</strong></td>
<td style="text-align: center;"><strong>0.852</strong></td>
<td style="text-align: center;"><strong>0.919</strong></td>
<td style="text-align: center;"><strong>0.919</strong></td>
<td style="text-align: center;"><strong>0.856</strong></td>
</tr>
</tbody>
</table>
\* _Reported in model paper_
### RAGTruth
<table border="1" cellpadding="10" cellspacing="0" style="border-collapse: collapse; width: auto;">
<tr>
<th rowspan="2" style="text-align: left;">Evaluator</th>
<th colspan="3" style="text-align:center;">RAGTruth QA</th>
<th colspan="3" style="text-align:center;">RAGTruth Data-to-Text</th>
<th colspan="3" style="text-align:center;">RAGTruth Summarization</th>
</tr>
<tr>
<th style="text-align:center;">Precision</th>
<th style="text-align:center;">Recall</th>
<th style="text-align:center;">F1</th>
<th style="text-align:center;">Precision</th>
<th style="text-align:center;">Recall</th>
<th style="text-align:center;">F1</th>
<th style="text-align:center;">Precision</th>
<th style="text-align:center;">Recall</th>
<th style="text-align:center;">F1</th>
</tr>
<tr>
<td>microsoft/Phi-3.5-mini-instruct</td>
<td style="text-align:center;">0.817</td>
<td style="text-align:center;">0.963</td>
<td style="text-align:center;">0.884</td>
<td style="text-align:center;">0.356</td>
<td style="text-align:center;"><strong>1.000</strong></td>
<td style="text-align:center;">0.525</td>
<td style="text-align:center;">0.776</td>
<td style="text-align:center;"><strong>1.000</strong></td>
<td style="text-align:center;"><strong>0.874</strong></td>
</tr>
<tr>
<td>meta-llama/Meta-Llama-3.1-8B-Instruct</td>
<td style="text-align:center;"><strong>0.844</strong></td>
<td style="text-align:center;"><u>0.986</u></td>
<td style="text-align:center;"><strong>0.910</strong></td>
<td style="text-align:center;">0.382</td>
<td style="text-align:center;">0.537</td>
<td style="text-align:center;">0.447</td>
<td style="text-align:center;"><u>0.797</u></td>
<td style="text-align:center;"><u>0.940</u></td>
<td style="text-align:center;">0.863</td>
</tr>
<tr>
<td>mistralai/Mistral-Nemo-Instruct-2407</td>
<td style="text-align:center;">0.821</td>
<td style="text-align:center;"><strong>0.995</strong></td>
<td style="text-align:center;"><u>0.900</u></td>
<td style="text-align:center;">0.357</td>
<td style="text-align:center;"><strong>1.000</strong></td>
<td style="text-align:center;">0.526</td>
<td style="text-align:center;">0.775</td>
<td style="text-align:center;"><strong>1.000</strong></td>
<td style="text-align:center;"><u>0.873</u></td>
</tr>
<tr>
<td>gpt-4o-mini</td>
<td style="text-align:center;">0.830</td>
<td style="text-align:center;">0.966</td>
<td style="text-align:center;">0.893</td>
<td style="text-align:center;">0.398</td>
<td style="text-align:center;">0.994</td>
<td style="text-align:center;">0.569</td>
<td style="text-align:center;">0.786</td>
<td style="text-align:center;">0.997</td>
<td style="text-align:center;">0.879</td>
</tr>
<tr>
<td>Luna*</td>
<td style="text-align:center;">0.378</td>
<td style="text-align:center;">0.800</td>
<td style="text-align:center;">0.513</td>
<td style="text-align:center;">0.649</td>
<td style="text-align:center;">0.912</td>
<td style="text-align:center;"><u>0.759</u></td>
<td style="text-align:center;">0.400</td>
<td style="text-align:center;">0.765</td>
<td style="text-align:center;">0.525</td>
</tr>
<tr>
<td>RAGAS Faithfuless*</td>
<td style="text-align:center;">0.312</td>
<td style="text-align:center;">0.419</td>
<td style="text-align:center;">0.357</td>
<td style="text-align:center;"><strong>0.792</strong></td>
<td style="text-align:center;">0.508</td>
<td style="text-align:center;">0.619</td>
<td style="text-align:center;">0.642</td>
<td style="text-align:center;">0.299</td>
<td style="text-align:center;">0.408</td>
</tr>
<tr>
<td>Trulens Groundedness*</td>
<td style="text-align:center;">0.228</td>
<td style="text-align:center;">0.925</td>
<td style="text-align:center;">0.366</td>
<td style="text-align:center;"><u>0.669</u></td>
<td style="text-align:center;"><u>0.965</u></td>
<td style="text-align:center;"><strong>0.790</strong></td>
<td style="text-align:center;">0.402</td>
<td style="text-align:center;">0.500</td>
<td style="text-align:center;">0.445</td>
</tr>
<tr>
<td>flowaicom/Flow-Judge-v0.1</td>
<td style="text-align:center;"><u>0.835</u></td>
<td style="text-align:center;">0.961</td>
<td style="text-align:center;">0.894</td>
<td style="text-align:center;">0.541</td>
<td style="text-align:center;">0.249</td>
<td style="text-align:center;">0.341</td>
<td style="text-align:center;"><strong>0.834</strong></td>
<td style="text-align:center;">0.836</td>
<td style="text-align:center;">0.835</td>
</tr>
</table>
\* _reported in model paper_
### HaluEval, Covid-QA, PubMedQA
<table border="1" cellpadding="10" cellspacing="0" style="border-collapse: collapse; width: auto;">
<thead>
<tr>
<th rowspan="2" style="text-align: left;">Evaluator</th>
<th colspan="4" style="text-align: center;">HaluEval</th>
<th colspan="4" style="text-align: center;">Covid-QA</th>
<th colspan="4" style="text-align: center;">PubMedQA</th>
</tr>
<tr>
<th style="text-align: center;">Precision</th>
<th style="text-align: center;">Recall</th>
<th style="text-align: center;">F1</th>
<th style="text-align: center;">Accuracy</th>
<th style="text-align: center;">Precision</th>
<th style="text-align: center;">Recall</th>
<th style="text-align: center;">F1</th>
<th style="text-align: center;">Accuracy</th>
<th style="text-align: center;">Precision</th>
<th style="text-align: center;">Recall</th>
<th style="text-align: center;">F1</th>
<th style="text-align: center;">Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left;">microsoft/Phi-3.5-mini-instruct</td>
<td style="text-align: center;">0.730</td>
<td style="text-align: center;"><u>0.914</u></td>
<td style="text-align: center;">0.812</td>
<td style="text-align: center;">0.788</td>
<td style="text-align: center;">0.617</td>
<td style="text-align: center;">0.964</td>
<td style="text-align: center;">0.752</td>
<td style="text-align: center;">0.681</td>
<td style="text-align: center;">0.623</td>
<td style="text-align: center;"><u>0.986</u></td>
<td style="text-align: center;">0.764</td>
<td style="text-align: center;">0.696</td>
</tr>
<tr>
<td style="text-align: left;">meta-llama/Meta-Llama-3.1-8B-Instruct</td>
<td style="text-align: center;"><strong>0.864</strong></td>
<td style="text-align: center;">0.891</td>
<td style="text-align: center;"><strong>0.878</strong></td>
<td style="text-align: center;"><u>0.874</u></td>
<td style="text-align: center;"><u>0.663</u></td>
<td style="text-align: center;"><u>0.976</u></td>
<td style="text-align: center;"><u>0.790</u></td>
<td style="text-align: center;">0.734</td>
<td style="text-align: center;"><u>0.681</u></td>
<td style="text-align: center;">0.962</td>
<td style="text-align: center;"><strong>0.797</strong></td>
<td style="text-align: center;">0.750</td>
</tr>
<tr>
<td style="text-align: left;">mistralai/Mistral-Nemo-Instruct-2407</td>
<td style="text-align: center;">0.655</td>
<td style="text-align: center;"><strong>0.993</strong></td>
<td style="text-align: center;">0.789</td>
<td style="text-align: center;">0.735</td>
<td style="text-align: center;">0.651</td>
<td style="text-align: center;"><strong>0.982</strong></td>
<td style="text-align: center;">0.783</td>
<td style="text-align: center;">0.728</td>
<td style="text-align: center;">0.602</td>
<td style="text-align: center;"><strong>0.994</strong></td>
<td style="text-align: center;"><u>0.750</u></td>
<td style="text-align: center;">0.669</td>
</tr>
<tr>
<td style="text-align: left;">gpt-4o-mini</td>
<td style="text-align: center;">0.846</td>
<td style="text-align: center;">0.940</td>
<td style="text-align: center;">0.891</td>
<td style="text-align: center;">0.885</td>
<td style="text-align: center;">0.795</td>
<td style="text-align: center;">0.964</td>
<td style="text-align: center;">0.872</td>
<td style="text-align: center;">0.858</td>
<td style="text-align: center;">0.791</td>
<td style="text-align: center;">0.904</td>
<td style="text-align: center;">0.843</td>
<td style="text-align: center;">0.832</td>
</tr>
<tr>
<td style="text-align: left;">flowaicom/Flow-Judge-v0.1</td>
<td style="text-align: center;"><u>0.826</u></td>
<td style="text-align: center;">0.895</td>
<td style="text-align: center;"><u>0.859</u></td>
<td style="text-align: center;">0.854</td>
<td style="text-align: center;"><strong>0.767</strong></td>
<td style="text-align: center;">0.877</td>
<td style="text-align: center;"><strong>0.818</strong></td>
<td style="text-align: center;">0.807</td>
<td style="text-align: center;"><strong>0.874</strong></td>
<td style="text-align: center;">0.624</td>
<td style="text-align: center;">0.728</td>
<td style="text-align: center;">0.767</td>
</tr>
<tr>
<td style="text-align: left;">gpt-4o*</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.879</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.821</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.821</td>
</tr>
<tr>
<td style="text-align: left;">Claude 3 Sonnet*</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.845</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.829</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.829</td>
</tr>
<tr>
<td style="text-align: left;">RAGAS Faithfulness*</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.706</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.750</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.669</td>
</tr>
<tr>
<td style="text-align: left;">Lynx 8B*</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.857</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;"><u>0.963</u></td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;"><u>0.852</u></td>
</tr>
<tr>
<td style="text-align: left;">Lynx 70B*</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;"><strong>0.884</strong></td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;"><strong>0.975</strong></td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;"><strong>0.904</strong></td>
</tr>
</tbody>
</table>
\* _reported in model paper_
### Feedback Bench
<table border="1" cellpadding="10" cellspacing="0" style="border-collapse: collapse; width: auto;">
<tr>
<th rowspan="2">Evaluator</th>
<th colspan="3" style="text-align:center;">Feedback bench</th>
</tr>
<tr>
<th style="text-align:center;">pearsonr</th>
<th style="text-align:center;">spearmanr</th>
<th style="text-align:center;">kendall-tau</th>
</tr>
<tr>
<td>microsoft/Phi-3.5-mini-instruct</td>
<td style="text-align:center;">0.710</td>
<td style="text-align:center;">0.721</td>
<td style="text-align:center;">0.622</td>
</tr>
<tr>
<td>prometheus-eval/prometheus-7b-v2.0*</td>
<td style="text-align:center;"><strong>0.878</strong></td>
<td style="text-align:center;"><strong>0.909</strong></td>
<td style="text-align:center;"><strong>0.773</strong></td>
</tr>
<tr>
<td>meta-llama/Meta-Llama-3.1-8B-Instruct</td>
<td style="text-align:center;">0.742</td>
<td style="text-align:center;">0.749</td>
<td style="text-align:center;">0.654</td>
</tr>
<tr>
<td>mistralai/Mistral-Nemo-Instruct-2407</td>
<td style="text-align:center;">0.720</td>
<td style="text-align:center;">0.724</td>
<td style="text-align:center;">0.632</td>
</tr>
<tr>
<td>gpt-4o-mini</td>
<td style="text-align:center;">0.797</td>
<td style="text-align:center;">0.795</td>
<td style="text-align:center;">0.701</td>
</tr>
<tr>
<td>flowaicom/Flow-Judge-v0.1</td>
<td style="text-align:center;"><u>0.787</u></td>
<td style="text-align:center;"><u>0.789</u></td>
<td style="text-align:center;"><u>0.688</u></td>
</tr>
</table>
\* _reported in model paper using reference answers_
## License
We opted for the Apache 2.0 license for Flow Judge to provide the community with an open, small yet powerful LM evaluator. Our goal is to support the wider adoption of rigorous evaluation techniques in LLM system development, making them more accessible to practitioners and researchers.
## Limitations and future work
Multilingual evaluation: Flow Judge has been fine-tuned exclusively on English data. While the foundation model (Phi-3.5-mini-instruct [17]) may possess multilingual capabilities, we have not systematically evaluated Flow Judge performance in non-English contexts. We plan to explore multi-lingual LM evaluators in the future.
Long context and structured Inputs: Our training dataset encompasses a wide range of custom metrics relevant to evaluating LLM systems. However, it does not include examples with long context inputs or structured data formats such as JSON, since these are harder to synthetically generate. This limitation may impact Flow Judge's performance when evaluating responses that require processing extensive context or parsing structured input. Extending our model’s capabilities to handle these input types represents an important area for future research.
Math and coding: The current version has not been trained on specific task domains such as arithmetic problems or code evaluation. As a result, its performance in these specialized areas may be limited. Future iterations of the model should address these gaps.
Domain-specific knowledge and complex multi-step evaluations: Flow Judge may struggle with highly specialized domain knowledge or proprietary data outside the training scope of its foundation model. Additionally, evaluation tasks requiring multi-step reasoning or complex logical processes may challenge the model's capabilities. We strongly recommend conducting meta-evaluations of the model performance before deploying it in specialized or highly complex evaluation scenarios.
|