--- base_model: "meta-llama/Meta-Llama-3-8B-Instruct" library_name: transformers tags: - mergekit - merge - facebook - meta - pytorch - llama - llama-3 language: - en pipeline_tag: text-generation license: other license_name: llama3 license_link: LICENSE inference: false model_creator: MaziyarPanahi model_name: Llama-3-13B-Instruct-v0.1 quantized_by: MaziyarPanahi --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/Llama-3-13B-Instruct-v0.1-GGUF This is quantized version of [MaziyarPanahi/Llama-3-13B-Instruct-v0.1](https://huggingface.co/MaziyarPanahi/Llama-3-13B-Instruct-v0.1) created using llama.cpp # Original Model Card Goku 8x22B v0.1 Logo # Llama-3-13B-Instruct-v0.1 This model is a self-merge of `meta-llama/Meta-Llama-3-8B-Instruct` model. # How to use You can use this model by using `MaziyarPanahi/Llama-3-13B-Instruct-v0.1` as the model name in Hugging Face's transformers library. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from transformers import pipeline import torch model_id = "MaziyarPanahi/Llama-3-13B-Instruct-v0.1" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, # attn_implementation="flash_attention_2" ) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) streamer = TextStreamer(tokenizer) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, streamer=streamer ) # Then you can use the pipeline to generate text. messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.95, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## Prompt template ```text <|begin_of_text|><|start_header_id|>system<|end_header_id|> You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|> what's 25-4*2+3<|eot_id|><|start_header_id|>assistant<|end_header_id|> To evaluate this expression, we need to follow the order of operations (PEMDAS): 1. First, multiply 4 and 2: 4*2 = 8 2. Then, subtract 8 from 25: 25 - 8 = 17 3. Finally, add 3: 17 + 3 = 20 So, 25-4*2+3 = 20!<|eot_id|> To evaluate this expression, we need to follow the order of operations (PEMDAS): 1. First, multiply 4 and 2: 4*2 = 8 2. Then, subtract 8 from 25: 25 - 8 = 17 3. Finally, add 3: 17 + 3 = 20 So, 25-4*2+3 = 20! ```