aashish1904
commited on
Commit
โข
e970995
1
Parent(s):
31ce269
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
license: llama3
|
5 |
+
base_model:
|
6 |
+
- meta-llama/Meta-Llama-3-8B-Instruct
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
- ko
|
10 |
+
tags:
|
11 |
+
- facebook
|
12 |
+
- meta
|
13 |
+
- llama
|
14 |
+
- llama-3
|
15 |
+
- llama-3-ko
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
|
20 |
+
|
21 |
+
# QuantFactory/Llama-3-MAAL-8B-Instruct-v0.1-GGUF
|
22 |
+
This is quantized version of [maum-ai/Llama-3-MAAL-8B-Instruct-v0.1](https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-v0.1) created using llama.cpp
|
23 |
+
|
24 |
+
# Original Model Card
|
25 |
+
|
26 |
+
<p align="left">
|
27 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/646484cfb90150b2706df03b/BEOyMpnnY9VY2KXlc3V2F.png" width="20%"/>
|
28 |
+
<p>
|
29 |
+
|
30 |
+
# Llama-3-MAAL-8B-Instruct-v0.1
|
31 |
+
we release MAAL, Multilingual Adaptive Augmentation Language-model which comprises a groundbreaking fusion of multilingual capabilities and adaptive augmentation techniques.
|
32 |
+
|
33 |
+
- **Developed by:** [maum.ai Brain NLP](https://maum-ai.github.io). Jaeyoon Jung, Jinjoo Lee, Yongjae Lee, Dongjun Lee, Woosung Joo
|
34 |
+
- **Language(s) (NLP):** Korean, English (currently, bilingual)
|
35 |
+
|
36 |
+
## Model Description
|
37 |
+
|
38 |
+
Version 0.1 uses cross-lingual training to transfer instruction-following capabilities from English to Korean.
|
39 |
+
|
40 |
+
- We Trained this model on an 8 H100-80G for 1 day with cross-lingual training dataset
|
41 |
+
- we recommend using the fixed system prompt for the model unless you fine-tune it
|
42 |
+
```
|
43 |
+
๋๋ ๋ง์์์ด์์ด์ ์ฑ๋ด MAAL์ด๋ค. ๊ณ ๊ฐ์ ์ง๋ฌธ์ ์น์ ํ๊ฒ ๋ตํ์ฌ๋ผ.
|
44 |
+
```
|
45 |
+
|
46 |
+
## sample inference code (GPU)
|
47 |
+
|
48 |
+
```
|
49 |
+
import transformers
|
50 |
+
import torch
|
51 |
+
|
52 |
+
model_id = "maum-ai/Llama-3-MAAL-8B-Instruct-v0.1"
|
53 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
|
54 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
55 |
+
streamer = transformers.TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
56 |
+
|
57 |
+
# we recommend using the fixed prompt for the model unless you fine-tune it
|
58 |
+
prompt = "๋๋ ๋ง์์์ด์์ด์ ์ฑ๋ด MAAL์ด๋ค. ๊ณ ๊ฐ์ ์ง๋ฌธ์ ์น์ ํ๊ฒ ๋ตํ์ฌ๋ผ."
|
59 |
+
instruction = "์ฌ๊ณผ ํ ๋ฐ์ค์๋ ์ฌ๊ณผ๊ฐ 30๊ฐ ๋ค์ด์๋๋ฐ, ์ฒ์์๋ ์ฌ๊ณผ 3๋ฐ์ค๊ฐ ์์๊ณ , ๋ด๊ฐ ์ฌ๊ณผ 5๊ฐ๋ฅผ ๋จน์์ด. ๋จ์ ์ฌ๊ณผ๋ ์ด ๋ช๊ฐ์ผ?"
|
60 |
+
|
61 |
+
messages = [
|
62 |
+
{"role": "system", "content": f"{prompt}"},
|
63 |
+
{"role": "user", "content": f"{instruction}"}
|
64 |
+
]
|
65 |
+
|
66 |
+
inputs = tokenizer.apply_chat_template(
|
67 |
+
messages,
|
68 |
+
tokenize=True,
|
69 |
+
return_tensors='pt').to("cuda")
|
70 |
+
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=1024, pad_token_id=tokenizer.eos_token_id)
|
71 |
+
```
|
72 |
+
|
73 |
+
## Evaluation Results
|
74 |
+
|
75 |
+
As the main goal of version 0.1 is to **transfer instruction-following capabilities from English to Korean** without utilizing continuous pre-training, etc., we select [**LogicKor**](https://github.com/StableFluffy/LogicKor) as our evaluation method to assess the Korean instruction skills.
|
76 |
+
|
77 |
+
We compare our model with a similar parameter model (less than 13B) that has been fine-tuned on the Korean dataset. \* denotes our self-report result.
|
78 |
+
|
79 |
+
|Model|single-turn(โ)|multi-turn(โ)|average(โ)|
|
80 |
+
|-|-|-|-|
|
81 |
+
|maum-ai/Llama-3-MAAL-8B-Instruct-v0.1*|**5.80**|4.66|**5.23**|
|
82 |
+
|maywell/Synatra-kiqu-10.7B|5.71|4.73|5.22|
|
83 |
+
|yanolja/EEVE-Korean-Instruct-10.8B-v1.0|5.78|3.92|4.85|
|
84 |
+
|nlpai-lab/KULLM3|4.61|**4.83**|4.72|
|
85 |
+
|MLP-KTLim/llama3-Bllossom*|2.11|1.57|1.84|
|
86 |
+
|
87 |
+
## Limitations
|
88 |
+
Due to this model being trained on a small dataset, it has several limitations.
|
89 |
+
- Hard to generate diverse Korean texts
|
90 |
+
- lack of Korean knowledge & Culture (localization)
|
91 |
+
- Not work with Image inputs and video inputs
|
92 |
+
|
93 |
+
## Todo
|
94 |
+
we will solve these limitations one by one by upgrading this model like as...
|
95 |
+
- Enhance the Korean generation through Vocabulary Expansion & Continuous pre-training. (more Korean corpus!)
|
96 |
+
- Localize with cultural adaptation method and additional Korean knowledge data. [*similar idea*](https://aclanthology.org/2023.emnlp-main.18/)
|
97 |
+
- Develop a Vision Language Model that can handle both video and image inputs. [*similar idea*](https://github.com/PKU-YuanGroup/Video-LLaVA)
|