aashish1904 commited on
Commit
e970995
โ€ข
1 Parent(s): 31ce269

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: llama3
5
+ base_model:
6
+ - meta-llama/Meta-Llama-3-8B-Instruct
7
+ language:
8
+ - en
9
+ - ko
10
+ tags:
11
+ - facebook
12
+ - meta
13
+ - llama
14
+ - llama-3
15
+ - llama-3-ko
16
+
17
+ ---
18
+
19
+ ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
20
+
21
+ # QuantFactory/Llama-3-MAAL-8B-Instruct-v0.1-GGUF
22
+ This is quantized version of [maum-ai/Llama-3-MAAL-8B-Instruct-v0.1](https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-v0.1) created using llama.cpp
23
+
24
+ # Original Model Card
25
+
26
+ <p align="left">
27
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/646484cfb90150b2706df03b/BEOyMpnnY9VY2KXlc3V2F.png" width="20%"/>
28
+ <p>
29
+
30
+ # Llama-3-MAAL-8B-Instruct-v0.1
31
+ we release MAAL, Multilingual Adaptive Augmentation Language-model which comprises a groundbreaking fusion of multilingual capabilities and adaptive augmentation techniques.
32
+
33
+ - **Developed by:** [maum.ai Brain NLP](https://maum-ai.github.io). Jaeyoon Jung, Jinjoo Lee, Yongjae Lee, Dongjun Lee, Woosung Joo
34
+ - **Language(s) (NLP):** Korean, English (currently, bilingual)
35
+
36
+ ## Model Description
37
+
38
+ Version 0.1 uses cross-lingual training to transfer instruction-following capabilities from English to Korean.
39
+
40
+ - We Trained this model on an 8 H100-80G for 1 day with cross-lingual training dataset
41
+ - we recommend using the fixed system prompt for the model unless you fine-tune it
42
+ ```
43
+ ๋„ˆ๋Š” ๋งˆ์Œ์—์ด์•„์ด์˜ ์ฑ—๋ด‡ MAAL์ด๋‹ค. ๊ณ ๊ฐ์˜ ์งˆ๋ฌธ์— ์นœ์ ˆํ•˜๊ฒŒ ๋‹ตํ•˜์—ฌ๋ผ.
44
+ ```
45
+
46
+ ## sample inference code (GPU)
47
+
48
+ ```
49
+ import transformers
50
+ import torch
51
+
52
+ model_id = "maum-ai/Llama-3-MAAL-8B-Instruct-v0.1"
53
+ model = transformers.AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
54
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
55
+ streamer = transformers.TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
56
+
57
+ # we recommend using the fixed prompt for the model unless you fine-tune it
58
+ prompt = "๋„ˆ๋Š” ๋งˆ์Œ์—์ด์•„์ด์˜ ์ฑ—๋ด‡ MAAL์ด๋‹ค. ๊ณ ๊ฐ์˜ ์งˆ๋ฌธ์— ์นœ์ ˆํ•˜๊ฒŒ ๋‹ตํ•˜์—ฌ๋ผ."
59
+ instruction = "์‚ฌ๊ณผ ํ•œ ๋ฐ•์Šค์—๋Š” ์‚ฌ๊ณผ๊ฐ€ 30๊ฐœ ๋“ค์–ด์žˆ๋Š”๋ฐ, ์ฒ˜์Œ์—๋Š” ์‚ฌ๊ณผ 3๋ฐ•์Šค๊ฐ€ ์žˆ์—ˆ๊ณ , ๋‚ด๊ฐ€ ์‚ฌ๊ณผ 5๊ฐœ๋ฅผ ๋จน์—ˆ์–ด. ๋‚จ์€ ์‚ฌ๊ณผ๋Š” ์ด ๋ช‡๊ฐœ์•ผ?"
60
+
61
+ messages = [
62
+ {"role": "system", "content": f"{prompt}"},
63
+ {"role": "user", "content": f"{instruction}"}
64
+ ]
65
+
66
+ inputs = tokenizer.apply_chat_template(
67
+ messages,
68
+ tokenize=True,
69
+ return_tensors='pt').to("cuda")
70
+ outputs = model.generate(inputs, streamer=streamer, max_new_tokens=1024, pad_token_id=tokenizer.eos_token_id)
71
+ ```
72
+
73
+ ## Evaluation Results
74
+
75
+ As the main goal of version 0.1 is to **transfer instruction-following capabilities from English to Korean** without utilizing continuous pre-training, etc., we select [**LogicKor**](https://github.com/StableFluffy/LogicKor) as our evaluation method to assess the Korean instruction skills.
76
+
77
+ We compare our model with a similar parameter model (less than 13B) that has been fine-tuned on the Korean dataset. \* denotes our self-report result.
78
+
79
+ |Model|single-turn(โ†‘)|multi-turn(โ†‘)|average(โ†‘)|
80
+ |-|-|-|-|
81
+ |maum-ai/Llama-3-MAAL-8B-Instruct-v0.1*|**5.80**|4.66|**5.23**|
82
+ |maywell/Synatra-kiqu-10.7B|5.71|4.73|5.22|
83
+ |yanolja/EEVE-Korean-Instruct-10.8B-v1.0|5.78|3.92|4.85|
84
+ |nlpai-lab/KULLM3|4.61|**4.83**|4.72|
85
+ |MLP-KTLim/llama3-Bllossom*|2.11|1.57|1.84|
86
+
87
+ ## Limitations
88
+ Due to this model being trained on a small dataset, it has several limitations.
89
+ - Hard to generate diverse Korean texts
90
+ - lack of Korean knowledge & Culture (localization)
91
+ - Not work with Image inputs and video inputs
92
+
93
+ ## Todo
94
+ we will solve these limitations one by one by upgrading this model like as...
95
+ - Enhance the Korean generation through Vocabulary Expansion & Continuous pre-training. (more Korean corpus!)
96
+ - Localize with cultural adaptation method and additional Korean knowledge data. [*similar idea*](https://aclanthology.org/2023.emnlp-main.18/)
97
+ - Develop a Vision Language Model that can handle both video and image inputs. [*similar idea*](https://github.com/PKU-YuanGroup/Video-LLaVA)