--- language: - en - zh library_name: transformers tags: - Long Context - chatglm - llama datasets: - THUDM/LongWriter-6k pipeline_tag: text-generation --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/LongWriter-glm4-9b-GGUF This is quantized version of [THUDM/LongWriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b) created using llama.cpp # Original Model Card # LongWriter-glm4-9b
🤗 [LongWriter Dataset] • 💻 [Github Repo] • 📃 [LongWriter Paper]
LongWriter-glm4-9b is trained based on [glm-4-9b](https://huggingface.co/THUDM/glm-4-9b), and is capable of generating 10,000+ words at once. Environment: Same environment requirement as [glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) (`transforemrs>=4.43.0`). A simple demo for deployment of the model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-glm4-9b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("THUDM/LongWriter-glm4-9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") model = model.eval() query = "Write a 10000-word China travel guide" response, history = model.chat(tokenizer, query, history=[], max_new_tokens=32768, temperature=0.5) print(response) ``` You can also deploy the model with [vllm](https://github.com/vllm-project/vllm), which allows 10,000+ words generation within a minute. Here is an example code: ```python from vllm import LLM, SamplingParams model = LLM( model= "THUDM/LongWriter-glm4-9b", dtype="auto", trust_remote_code=True, tensor_parallel_size=1, max_model_len=32768, gpu_memory_utilization=1, ) tokenizer = model.get_tokenizer() stop_token_ids = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), tokenizer.get_command("<|observation|>")] generation_params = SamplingParams( temperature=0.5, top_p=0.8, top_k=50, max_tokens=32768, repetition_penalty=1, stop_token_ids=stop_token_ids ) query = "Write a 10000-word China travel guide" input_ids = tokenizer.build_chat_input(query, history=[], role='user').input_ids[0].tolist() outputs = model.generate( sampling_params=generation_params, prompt_token_ids=[input_ids], ) output = outputs[0] print(output.outputs[0].text) ``` License: [glm-4-9b License](https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE) ## Citation If you find our work useful, please consider citing LongWriter: ``` @article{bai2024longwriter, title={LongWriter: Unleashing 10,000+ Word Generation from Long Context LLMs}, author={Yushi Bai and Jiajie Zhang and Xin Lv and Linzhi Zheng and Siqi Zhu and Lei Hou and Yuxiao Dong and Jie Tang and Juanzi Li}, journal={arXiv preprint arXiv:2408.07055}, year={2024} } ```