File size: 4,591 Bytes
a671d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

---

library_name: transformers
base_model: nvidia/Llama-3.1-Minitron-4B-Width-Base
tags:
- axolotl
- generated_from_trainer
model-index:
- name: MagpieLM-4B-SFT-v0.1
  results: []
datasets:
- Magpie-Align/MagpieLM-SFT-Data-v0.1
language:
- en

---

[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)


# QuantFactory/MagpieLM-4B-SFT-v0.1-GGUF
This is quantized version of [Magpie-Align/MagpieLM-4B-SFT-v0.1](https://huggingface.co/Magpie-Align/MagpieLM-4B-SFT-v0.1) created using llama.cpp

# Original Model Card


![Magpie](https://cdn-uploads.huggingface.co/production/uploads/653df1323479e9ebbe3eb6cc/FWWILXrAGNwWr52aghV0S.png)

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://api.wandb.ai/links/uw-nsl/7grozq8s)

# 🐦 MagpieLM-4B-SFT-v0.1

Project Web: [https://magpie-align.github.io/](https://magpie-align.github.io/)

Arxiv Technical Report: [https://arxiv.org/abs/2406.08464](https://arxiv.org/abs/2406.08464)

Codes: [https://github.com/magpie-align/magpie](https://github.com/magpie-align/magpie)

## About This Model

*Model full name: Llama3.1-MagpieLM-4B-SFT-v0.1*

This model is a fine-tuned version of [nvidia/Llama-3.1-Minitron-4B-Width-Base](https://huggingface.co/nvidia/Llama-3.1-Minitron-4B-Width-Base) on [Magpie-Align/MagpieLM-SFT-Data-v0.1](https://huggingface.co/datasets/Magpie-Align/MagpieLM-SFT-Data-v0.1) dataset.

This is the intermediate checkpoint for fine-tuning [Magpie-Align/MagpieLM-4B-Chat-v0.1](https://huggingface.co/Magpie-Align/MagpieLM-4B-Chat-v0.1).

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 51
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1026        | 0.0038 | 1    | 1.1547          |
| 0.6994        | 0.2015 | 53   | 0.7142          |
| 0.6181        | 0.4030 | 106  | 0.6375          |
| 0.5967        | 0.6045 | 159  | 0.6134          |
| 0.5793        | 0.8060 | 212  | 0.6004          |
| 0.5736        | 1.0075 | 265  | 0.5914          |
| 0.5411        | 1.1938 | 318  | 0.5883          |
| 0.5402        | 1.3953 | 371  | 0.5864          |
| 0.5423        | 1.5968 | 424  | 0.5856          |
| 0.5408        | 1.7983 | 477  | 0.5854          |

### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: nvidia/Llama-3.1-Minitron-4B-Width-Base
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: llama3

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Magpie-Align/MagpieLM-SFT-Data-v0.1
    type: sharegpt
    conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/MagpieLM-4B-SFT-v0.1

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Llama3.1-MagpieLM-4B-SFT-v0.1
wandb_log_model:
hub_model_id: Magpie-Align/MagpieLM-4B-SFT-v0.1

gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>
```
</details><br>