--- library_name: transformers base_model: nvidia/Llama-3.1-Minitron-4B-Width-Base tags: - axolotl - generated_from_trainer model-index: - name: MagpieLM-4B-SFT-v0.1 results: [] datasets: - Magpie-Align/MagpieLM-SFT-Data-v0.1 language: - en --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/MagpieLM-4B-SFT-v0.1-GGUF This is quantized version of [Magpie-Align/MagpieLM-4B-SFT-v0.1](https://huggingface.co/Magpie-Align/MagpieLM-4B-SFT-v0.1) created using llama.cpp # Original Model Card ![Magpie](https://cdn-uploads.huggingface.co/production/uploads/653df1323479e9ebbe3eb6cc/FWWILXrAGNwWr52aghV0S.png) [Visualize in Weights & Biases](https://api.wandb.ai/links/uw-nsl/7grozq8s) # 🐦 MagpieLM-4B-SFT-v0.1 Project Web: [https://magpie-align.github.io/](https://magpie-align.github.io/) Arxiv Technical Report: [https://arxiv.org/abs/2406.08464](https://arxiv.org/abs/2406.08464) Codes: [https://github.com/magpie-align/magpie](https://github.com/magpie-align/magpie) ## About This Model *Model full name: Llama3.1-MagpieLM-4B-SFT-v0.1* This model is a fine-tuned version of [nvidia/Llama-3.1-Minitron-4B-Width-Base](https://huggingface.co/nvidia/Llama-3.1-Minitron-4B-Width-Base) on [Magpie-Align/MagpieLM-SFT-Data-v0.1](https://huggingface.co/datasets/Magpie-Align/MagpieLM-SFT-Data-v0.1) dataset. This is the intermediate checkpoint for fine-tuning [Magpie-Align/MagpieLM-4B-Chat-v0.1](https://huggingface.co/Magpie-Align/MagpieLM-4B-Chat-v0.1). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 51 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1026 | 0.0038 | 1 | 1.1547 | | 0.6994 | 0.2015 | 53 | 0.7142 | | 0.6181 | 0.4030 | 106 | 0.6375 | | 0.5967 | 0.6045 | 159 | 0.6134 | | 0.5793 | 0.8060 | 212 | 0.6004 | | 0.5736 | 1.0075 | 265 | 0.5914 | | 0.5411 | 1.1938 | 318 | 0.5883 | | 0.5402 | 1.3953 | 371 | 0.5864 | | 0.5423 | 1.5968 | 424 | 0.5856 | | 0.5408 | 1.7983 | 477 | 0.5854 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: nvidia/Llama-3.1-Minitron-4B-Width-Base model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer chat_template: llama3 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Magpie-Align/MagpieLM-SFT-Data-v0.1 type: sharegpt conversation: llama3 dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: axolotl_out/MagpieLM-4B-SFT-v0.1 sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: SynDa wandb_entity: wandb_watch: wandb_name: Llama3.1-MagpieLM-4B-SFT-v0.1 wandb_log_model: hub_model_id: Magpie-Align/MagpieLM-4B-SFT-v0.1 gradient_accumulation_steps: 32 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 5 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```