aashish1904 commited on
Commit
c999f21
1 Parent(s): f2ba225

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: gemma
5
+ language:
6
+ - de
7
+ - en
8
+ - it
9
+ - fr
10
+ - pt
11
+ - es
12
+ tags:
13
+ - spectrum
14
+
15
+ ---
16
+
17
+ ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
18
+
19
+ # QuantFactory/SauerkrautLM-gemma-2-9b-it-GGUF
20
+ This is quantized version of [VAGOsolutions/SauerkrautLM-gemma-2-9b-it](https://huggingface.co/VAGOsolutions/SauerkrautLM-gemma-2-9b-it) created using llama.cpp
21
+
22
+ # Original Model Card
23
+
24
+
25
+ ![SauerkrautLM-gemma-2-9b-it]( https://vago-solutions.ai/wp-content/uploads/2024/08/SauerkrautLM-gemma-2-9b.png "SauerkrautLM-gemma-2-9b-it")
26
+ ## VAGO solutions SauerkrautLM-gemma-2-9b-it
27
+
28
+ **Fine-tuned Model** - *to showcase the potential of resource-efficient Fine-Tuning of Large Language Models using **Spectrum Fine-Tuning***
29
+
30
+ Introducing **SauerkrautLM-gemma-2-9b-it** – our Sauerkraut version of the powerful [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)!
31
+
32
+ - Fine-tuning on German-English data with [**Spectrum**](https://github.com/cognitivecomputations/spectrum) Fine-Tuning **targeting 25% of the layers.**
33
+ - Utilized unique German-English Sauerkraut Mix v2
34
+ - Implemented bespoke, precision-engineered fine-tuning approach
35
+
36
+ # Table of Contents
37
+ 1. [Overview of all SauerkrautLM-gemma-2-9b-it](#all-SauerkrautLM-gemma-2-9b-it)
38
+ 2. [Model Details](#model-details)
39
+ - [Training procedure](#training-procedure)
40
+ 3. [Evaluation](#evaluation)
41
+ 5. [Disclaimer](#disclaimer)
42
+ 6. [Contact](#contact)
43
+ 7. [Collaborations](#collaborations)
44
+ 8. [Acknowledgement](#acknowledgement)
45
+
46
+ ## All SauerkrautLM-gemma-2-9b-it
47
+
48
+ | Model | HF | EXL2 | GGUF | AWQ |
49
+ |-------|-------|-------|-------|-------|
50
+ | SauerkrautLM-gemma-2-9b-it | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-gemma-2-9b-it) | coming soon | coming soon | coming soon |
51
+
52
+ ## Model Details
53
+ **SauerkrautLM-gemma-2-9b-it**
54
+ - **Model Type:** SauerkrautLM-gemma-2-9b-it is a fine-tuned Model based on [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
55
+ - **Language(s):** German, English
56
+ - **License:** gemma
57
+ - **Contact:** [VAGO solutions](https://vago-solutions.ai)
58
+
59
+ ## Training Procedure
60
+
61
+ This model showcases the potential of resource-efficient fine-tuning of large language models using Spectrum Fine-Tuning. Here's a brief on the procedure:
62
+
63
+ **Fine-tuning on German-English Data**:
64
+
65
+ - Utilized Spectrum Fine-Tuning, targeting 25% of the model's layers
66
+ - Introduced the model to a unique German-English Sauerkraut Mix v2
67
+ - Implemented a bespoke, precision-engineered fine-tuning approach
68
+
69
+ **Sauerkraut Mix v2**:
70
+
71
+ - Premium Dataset for Language Models, focusing on German and English
72
+ - Meticulously selected, high-quality dataset combinations
73
+ - Cutting-edge synthetic datasets created using proprietary, high-precision generation techniques
74
+
75
+ ## Objective and Results
76
+
77
+ The primary goal of this training was to demonstrate that with Spectrum Fine-Tuning targeting 25% of the layers, an already strong 9 billion parameter model can be further enhanced while using a fraction of the resources of an ordinary fine-tuning approach.
78
+
79
+ The model has improved in every skill, with significant improvements in instruction-following, common-sense reasoning and math.
80
+
81
+ **Spectrum Fine-Tuning can efficiently enhance a large language model's capabilities while preserving the majority of its previously acquired knowledge.**
82
+
83
+ ## Evaluation
84
+
85
+ **AGIEVAL**
86
+ ![SauerkrautLM-gemma-2-9b-it-AGIEVAL]( https://vago-solutions.ai/wp-content/uploads/2024/08/AGIEval-gemma9b.png "SauerkrautLM-gemma-2-9b-it-AGIEVAL")
87
+
88
+ **GPT4ALL**
89
+ ![SauerkrautLM-gemma-2-9b-it-GPT4ALL]( https://vago-solutions.ai/wp-content/uploads/2024/08/GPT4ALL-gemma9b.png "SauerkrautLM-gemma-2-9b-it-GPT4ALL")
90
+
91
+ **TRUTHFULQA**
92
+ ![SauerkrautLM-gemma-2-9b-it-TRUTHFULQA]( https://vago-solutions.ai/wp-content/uploads/2024/08/TQA-gemma9b.png "SauerkrautLM-gemma-2-9b-it-TRUTHFULQA")
93
+
94
+ **OPENLEADERBOARD 2**
95
+ ![SauerkrautLM-gemma-2-9b-it-OPENLEADERBOARD]( https://vago-solutions.ai/wp-content/uploads/2024/08/HF2-gemma9b.png "SauerkrautLM-gemma-2-9b-it-OPENLEADERBOARD")
96
+
97
+ **MMLU 5-shot**
98
+ ![SauerkrautLM-gemma-2-9b-it-MMLU-5shot]( https://vago-solutions.ai/wp-content/uploads/2024/08/MMLU-Gemma9b.png "SauerkrautLM-gemma-2-9b-it-MMLU-5shot")
99
+
100
+ Please be informed that our benchmark results in absolute numbers are different from the Hugging Face Leaderboard, due to different setups in our benchmark evaluation pipeline. However, the relative differences remain the same.
101
+
102
+ ## Disclaimer
103
+ We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
104
+
105
+ ## Contact
106
+ If you are interested in customized LLMs for business applications, please get in contact with us via our website. We are also grateful for your feedback and suggestions.
107
+
108
+ ## Collaborations
109
+ We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
110
+
111
+ ## Acknowledgement
112
+ Many thanks to [google](https://huggingface.co/google) for providing such a valuable model to the Open-Source community.