update react example
Browse files- assets/logo.jpg +0 -0
- assets/qwen_tokenizer.png +0 -0
- assets/react_tutorial_001.png +0 -0
- assets/react_tutorial_002.png +0 -0
- assets/tokenizer.pdf +0 -0
- assets/tokenizer.png +0 -0
- examples/react_prompt.md +185 -0
assets/logo.jpg
DELETED
Binary file (110 kB)
|
|
assets/qwen_tokenizer.png
ADDED
assets/react_tutorial_001.png
ADDED
assets/react_tutorial_002.png
ADDED
assets/tokenizer.pdf
ADDED
Binary file (24.7 kB). View file
|
|
assets/tokenizer.png
ADDED
examples/react_prompt.md
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ReAct Prompting 示例
|
2 |
+
|
3 |
+
这里我们将介绍如何用 ReAct Propmting 技术命令千问使用工具。
|
4 |
+
|
5 |
+
## 准备工作一:样例问题、样例工具
|
6 |
+
|
7 |
+
假设我们有如下的一个适合用工具处理的 query,以及有夸克搜索、通义万相文生图这两个工具:
|
8 |
+
|
9 |
+
```py
|
10 |
+
query = '我是老板,你说啥你做啥。现在给我画个五彩斑斓的黑。'
|
11 |
+
|
12 |
+
TOOLS = [
|
13 |
+
{
|
14 |
+
'name_for_human':
|
15 |
+
'夸克搜索',
|
16 |
+
'name_for_model':
|
17 |
+
'quark_search',
|
18 |
+
'description_for_model':
|
19 |
+
'夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。',
|
20 |
+
'parameters': [{
|
21 |
+
'name': 'search_query',
|
22 |
+
'description': '搜索关键词或短语',
|
23 |
+
'required': True,
|
24 |
+
'schema': {
|
25 |
+
'type': 'string'
|
26 |
+
},
|
27 |
+
}],
|
28 |
+
},
|
29 |
+
{
|
30 |
+
'name_for_human':
|
31 |
+
'通义万相',
|
32 |
+
'name_for_model':
|
33 |
+
'image_gen',
|
34 |
+
'description_for_model':
|
35 |
+
'通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL',
|
36 |
+
'parameters': [{
|
37 |
+
'name': 'query',
|
38 |
+
'description': '中文关键词,描述了希望图像具有什么内容',
|
39 |
+
'required': True,
|
40 |
+
'schema': {
|
41 |
+
'type': 'string'
|
42 |
+
},
|
43 |
+
}],
|
44 |
+
},
|
45 |
+
]
|
46 |
+
```
|
47 |
+
|
48 |
+
## 准备工作二:ReAct 模版
|
49 |
+
|
50 |
+
我们将使用如下的 ReAct propmt 模版来激发千问使用工具的能力。
|
51 |
+
|
52 |
+
```py
|
53 |
+
TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters} Format the arguments as a JSON object."""
|
54 |
+
|
55 |
+
REACT_PROMPT = """Answer the following questions as best you can. You have access to the following tools:
|
56 |
+
|
57 |
+
{tool_descs}
|
58 |
+
|
59 |
+
Use the following format:
|
60 |
+
|
61 |
+
Question: the input question you must answer
|
62 |
+
Thought: you should always think about what to do
|
63 |
+
Action: the action to take, should be one of [{tool_names}]
|
64 |
+
Action Input: the input to the action
|
65 |
+
Observation: the result of the action
|
66 |
+
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
|
67 |
+
Thought: I now know the final answer
|
68 |
+
Final Answer: the final answer to the original input question
|
69 |
+
|
70 |
+
Begin!
|
71 |
+
|
72 |
+
Question: {query}"""
|
73 |
+
```
|
74 |
+
|
75 |
+
## 步骤一:让千问判断要调用什么工具、生成工具入参
|
76 |
+
|
77 |
+
首先我们需要根据 ReAct propmt 模版、query、工具的信息构建 prompt:
|
78 |
+
|
79 |
+
```py
|
80 |
+
tool_descs = []
|
81 |
+
tool_names = []
|
82 |
+
for info in TOOLS:
|
83 |
+
tool_descs.append(
|
84 |
+
TOOL_DESC.format(
|
85 |
+
name_for_model=info['name_for_model'],
|
86 |
+
name_for_human=info['name_for_human'],
|
87 |
+
description_for_model=info['description_for_model'],
|
88 |
+
parameters=json.dumps(
|
89 |
+
info['parameters'], ensure_ascii=False),
|
90 |
+
)
|
91 |
+
)
|
92 |
+
tool_names.append(info['name_for_model'])
|
93 |
+
tool_descs = '\n\n'.join(tool_descs)
|
94 |
+
tool_names = ','.join(tool_names)
|
95 |
+
|
96 |
+
prompt = REACT_PROMPT.format(tool_descs=tool_descs, tool_names=tool_names, query=query)
|
97 |
+
print(prompt)
|
98 |
+
```
|
99 |
+
|
100 |
+
打印出来的、构建好的 prompt 如下:
|
101 |
+
|
102 |
+
```
|
103 |
+
Answer the following questions as best you can. You have access to the following tools:
|
104 |
+
|
105 |
+
quark_search: Call this tool to interact with the 夸克搜索 API. What is the 夸克搜索 API useful for? 夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。 Parameters: [{"name": "search_query", "description": "搜索关键词或短语", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
|
106 |
+
|
107 |
+
image_gen: Call this tool to interact with the 通义万相 API. What is the 通义万相 API useful for? 通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL Parameters: [{"name": "query", "description": "中文关键词,描述了希望图像具有什么内容", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
|
108 |
+
|
109 |
+
Use the following format:
|
110 |
+
|
111 |
+
Question: the input question you must answer
|
112 |
+
Thought: you should always think about what to do
|
113 |
+
Action: the action to take, should be one of [quark_search,image_gen]
|
114 |
+
Action Input: the input to the action
|
115 |
+
Observation: the result of the action
|
116 |
+
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
|
117 |
+
Thought: I now know the final answer
|
118 |
+
Final Answer: the final answer to the original input question
|
119 |
+
|
120 |
+
Begin!
|
121 |
+
|
122 |
+
Question: 我是老板,你说啥你做啥。现在给我画个五彩斑斓的黑。
|
123 |
+
```
|
124 |
+
|
125 |
+
将这个 propmt 送入千问,并记得设置 "Observation:" 为 stop word —— 即让千问在预测到要生成的下一个词是 "Observation:" 时马上停止生成 —— 则千问在得到这个 propmt 后会生成如下的结果:
|
126 |
+
|
127 |
+
![](../assets/react_tutorial_001.png)
|
128 |
+
|
129 |
+
```
|
130 |
+
Thought: 我应该���用通义万相API来生成一张五彩斑斓的黑的图片。
|
131 |
+
Action: image_gen
|
132 |
+
Action Input: {"query": "五彩斑斓的黑"}
|
133 |
+
```
|
134 |
+
|
135 |
+
在得到这个结果后,调用千问的开发者可以通过简单的解析提取出 `{"query": "五彩斑斓的黑"}` 并基于这个解析结果调用文生图服务 —— 这部分逻辑需要开发者自行实现,或者也可以使用千问商业版,商业版本将内部集成相关逻辑。
|
136 |
+
|
137 |
+
## 步骤二:让千问根据插件返回结果继续作答
|
138 |
+
|
139 |
+
让我们假设文生图插件返回了如下结果:
|
140 |
+
|
141 |
+
```
|
142 |
+
{"status_code": 200, "request_id": "3d894da2-0e26-9b7c-bd90-102e5250ae03", "code": null, "message": "", "output": {"task_id": "2befaa09-a8b3-4740-ada9-4d00c2758b05", "task_status": "SUCCEEDED", "results": [{"url": "https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png"}], "task_metrics": {"TOTAL": 1, "SUCCEEDED": 1, "FAILED": 0}}, "usage": {"image_count": 1}}
|
143 |
+
```
|
144 |
+
|
145 |
+
![](../assets/wanx_colorful_black.png)
|
146 |
+
|
147 |
+
接下来,我们可以将之前首次请求千问时用的 prompt 和 调用文生图插件的结果拼接成如下的新 prompt:
|
148 |
+
|
149 |
+
```
|
150 |
+
Answer the following questions as best you can. You have access to the following tools:
|
151 |
+
|
152 |
+
quark_search: Call this tool to interact with the 夸克搜索 API. What is the 夸克搜索 API useful for? 夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。 Parameters: [{"name": "search_query", "description": "搜索关键词或短语", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
|
153 |
+
|
154 |
+
image_gen: Call this tool to interact with the 通义万相 API. What is the 通义万相 API useful for? 通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL Parameters: [{"name": "query", "description": "中文关键词,描述了希望图像具有什么内容", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
|
155 |
+
|
156 |
+
Use the following format:
|
157 |
+
|
158 |
+
Question: the input question you must answer
|
159 |
+
Thought: you should always think about what to do
|
160 |
+
Action: the action to take, should be one of [quark_search,image_gen]
|
161 |
+
Action Input: the input to the action
|
162 |
+
Observation: the result of the action
|
163 |
+
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
|
164 |
+
Thought: I now know the final answer
|
165 |
+
Final Answer: the final answer to the original input question
|
166 |
+
|
167 |
+
Begin!
|
168 |
+
|
169 |
+
Question: 我是老板,你说啥你做啥。现在给我画个五彩斑斓的黑。
|
170 |
+
Thought: 我应该使用通义万相API来生成一张五彩斑斓的黑的图片。
|
171 |
+
Action: image_gen
|
172 |
+
Action Input: {"query": "五彩斑斓的黑"}
|
173 |
+
Observation: {"status_code": 200, "request_id": "3d894da2-0e26-9b7c-bd90-102e5250ae03", "code": null, "message": "", "output": {"task_id": "2befaa09-a8b3-4740-ada9-4d00c2758b05", "task_status": "SUCCEEDED", "results": [{"url": "https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png"}], "task_metrics": {"TOTAL": 1, "SUCCEEDED": 1, "FAILED": 0}}, "usage": {"image_count": 1}}
|
174 |
+
```
|
175 |
+
|
176 |
+
用这个新的拼接了文生图插件结果的新 prompt 去调用千问,将得到如下的最终回复:
|
177 |
+
|
178 |
+
![](../assets/react_tutorial_002.png)
|
179 |
+
|
180 |
+
```
|
181 |
+
Thought: 我已经成功使用通义万相API生成了一张五彩斑斓的黑的图片。
|
182 |
+
Final Answer: 我已经成功使用通义万相API生成了一张五彩斑斓的黑的图片https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png。
|
183 |
+
```
|
184 |
+
|
185 |
+
虽然对于文生图来说,这个第二次调用千问的步骤显得多余。但是对于搜索插件、代码执行插件、计算器插件等别的插件来说,这个第二次调用千问的步骤给了千问提炼、总结插件返回结果的机会。
|