simonJJJ commited on
Commit
a6d8708
1 Parent(s): 03f0a50
Files changed (1) hide show
  1. README.md +89 -32
README.md CHANGED
@@ -18,11 +18,18 @@ inference: false
18
  <br>
19
 
20
  <p align="center">
21
- Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a>&nbsp | Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a>&nbsp | &nbsp<a href="https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary">Demo</a>&nbsp | &nbsp<a href="https://github.com/QwenLM/Qwen-VL/blob/main/visual_memo.md">Report</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/9bjvspyu">Discord</a>
22
 
23
  </p>
24
  <br>
25
 
 
 
 
 
 
 
 
26
  **Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
27
  - **Strong performance**: It significantly surpasses existing open-source Large Vision Language Models (LVLM) under similar scale settings on multiple English evaluation benchmarks (including Zero-shot caption, VQA, DocVQA, and Grounding).
28
  - **Multi-lingual LVLM support text recognization**: Qwen-VL naturally supports multi-lingual conversation, and it promotes end-to-end recognition of Chinese and English bi-lingual text in images.
@@ -30,13 +37,33 @@ inference: false
30
  - **First generalist model support grounding in Chinese**: Detecting bounding boxes through open-domain language expression in both Chinese and English.
31
  - **Fine-grained recognization and understanding**: Compared to the 224 resolution currently used by other open-source LVLM, the 448 resolution promotes fine-grained text recognition, document QA, and bounding box annotation.
32
 
 
 
 
 
 
 
33
  We release two models of the Qwen-VL series:
34
  - Qwen-VL: The pre-trained LVLM model uses Qwen-7B as the initialization of the LLM, and [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) as the initialization of the visual encoder. And connects them with a randomly initialized cross-attention layer. Qwen-VL was trained on about 1.5B image-text paired data. The final image input resolution is 448.
35
  - Qwen-VL-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques.
36
 
37
- For more details about Qwen-VL, please refer to our [technical memo](visual_memo.md).
 
 
38
 
39
- ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  We evaluated the model's ability from two perspectives:
42
  1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
@@ -58,13 +85,13 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
58
  <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/radar.png" width="600"/>
59
  <p>
60
 
61
- ### Zero-shot Caption & General VQA
62
  <table>
63
  <thead>
64
  <tr>
65
  <th rowspan="2">Model type</th>
66
  <th rowspan="2">Model</th>
67
- <th colspan="2">Zero-shot Caption</th>
68
  <th colspan="5">General VQA</th>
69
  </tr>
70
  <tr>
@@ -79,7 +106,7 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
79
  </thead>
80
  <tbody align="center">
81
  <tr>
82
- <td rowspan="12">Generalist<br>Models</td>
83
  <td>Flamingo-9B</td>
84
  <td>-</td>
85
  <td>61.5</td>
@@ -166,10 +193,10 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
166
  <td><b>78.8</b></td>
167
  <td><b>58.6</b></td>
168
  <td><b>59.3</b></td>
169
- <td><b>67.1</b></td>
170
- <td><b>34.3</b></td>
171
  </tr>
172
- <tr>
173
  <td>Qwen-VL (4-shot)</td>
174
  <td>-</td>
175
  <td>-</td>
@@ -178,18 +205,18 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
178
  <td>-</td>
179
  <td>-</td>
180
  <td>39.1</td>
181
- </tr>
182
  <tr>
183
  <td>Qwen-VL-Chat</td>
184
- <td>-</td>
185
- <td>81.5</td>
186
- <td>-</td>
187
- <td>56.69</td>
188
- <td>-</td>
189
- <td>68.22</td>
190
- <td>37.05</td>
191
- </tr>
192
- <tr>
193
  <td>Qwen-VL-Chat (4-shot)</td>
194
  <td>-</td>
195
  <td>-</td>
@@ -197,8 +224,8 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
197
  <td>60.6</td>
198
  <td>-</td>
199
  <td>-</td>
200
- <td>45.5</td>
201
- </tr>
202
  <tr>
203
  <td>Previous SOTA<br>(Per Task Fine-tuning)</td>
204
  <td>-</td>
@@ -213,10 +240,13 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
213
  </tbody>
214
  </table>
215
 
 
 
 
216
  - For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
217
  - For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.
218
 
219
- ### Text-based VQA (focuse on text understanding capabilities in images)
220
 
221
  <table>
222
  <thead>
@@ -284,6 +314,9 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
284
  </tbody>
285
  </table>
286
 
 
 
 
287
  - In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
288
  - Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.
289
 
@@ -392,22 +425,21 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
392
  <td><b>83.12</b></td>
393
  <td>88.25</td>
394
  <td><b>77.21</b></td>
395
- <td><b>85.58</b></td>
396
- <td><b>85.48</b></td>
397
  <td>78.22</td>
398
  </tr>
399
  <tr>
400
  <td>Qwen-VL-7B-Chat</td>
401
- <td><b>88.55</b></td>
402
  <td><b>92.27</b></td>
403
  <td>84.51</td>
404
  <td>82.82</td>
405
  <td><b>88.59</b></td>
 
 
 
406
  <td>-</td>
407
- <td>-</td>
408
- <td>-</td>
409
- <td>-</td>
410
- </tr>
411
  <tr>
412
  <td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
413
  <td>G-DINO-L</td>
@@ -448,6 +480,11 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
448
  </tbody>
449
  </table>
450
 
 
 
 
 
 
451
  - Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
452
  - Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.
453
 
@@ -455,6 +492,8 @@ We provide all of the above evaluation scripts for reproducing our experimental
455
 
456
  ### Chat evaluation
457
 
 
 
458
  TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.
459
 
460
  #### English evaluation
@@ -476,17 +515,27 @@ TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities o
476
  | VisualGLM | 247.1 |
477
  | Qwen-VL-Chat | 401.2 |
478
 
 
 
479
  Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.
480
 
481
  ## Requirements
482
 
 
 
 
 
483
  * python 3.8 and above
484
  * pytorch 1.12 and above, 2.0 and above are recommended
485
  * CUDA 11.4 and above are recommended (this is for GPU users)
486
 
487
  ## Quickstart
488
 
489
- Below, we provide simple examples to show how to use Qwen-VL and Qwen-VL-Chat with 🤖 ModelScope and 🤗 Transformers.
 
 
 
 
490
 
491
  Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
492
 
@@ -494,7 +543,9 @@ Before running the code, make sure you have setup the environment and installed
494
  pip install -r requirements.txt
495
  ```
496
 
497
- Now you can start with ModelScope or Transformers. More usage aboue vision encoder, please refer to [FAQ](FAQ.md).
 
 
498
 
499
  #### 🤗 Transformers
500
 
@@ -544,14 +595,20 @@ else:
544
 
545
  ## FAQ
546
 
547
- If you meet problems, please refer to [FAQ](FAQ.md) and the issues first to search a solution before you launch a new issue.
 
 
548
 
549
 
550
  ## License Agreement
551
 
 
 
552
  Researchers and developers are free to use the codes and model weights of both Qwen-VL and Qwen-VL-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
553
 
554
  ## Contact Us
555
 
 
 
556
  If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].
557
 
 
18
  <br>
19
 
20
  <p align="center">
21
+ Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a>&nbsp | Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a>&nbsp | &nbsp<a href="https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary">Demo</a>&nbsp | &nbsp<a href="https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md">Report</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/9bjvspyu">Discord</a>
22
 
23
  </p>
24
  <br>
25
 
26
+ **Qwen-VL** 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型的特点包括:
27
+ - **强大的性能**:在四大类多模态任务的标准英文测评中(Zero-shot Caption/VQA/DocVQA/Grounding)上,均取得同等通用模型大小下最好效果;
28
+ - **多语言对话模型**:天然支持多语言对话,端到端支持图片里中英双语的长文本识别;
29
+ - **多图交错对话**:支持多图输入和比较,指定图片问答,多图文学创作等;
30
+ - **首个支持中文开放域定位的通用模型**:通过中文开放域语言表达进行检测框标注;
31
+ - **细粒度识别和理解**:相比于目前其它开源LVLM使用的224分辨率,Qwen-VL是首个开源的448分辨率的LVLM模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。
32
+
33
  **Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
34
  - **Strong performance**: It significantly surpasses existing open-source Large Vision Language Models (LVLM) under similar scale settings on multiple English evaluation benchmarks (including Zero-shot caption, VQA, DocVQA, and Grounding).
35
  - **Multi-lingual LVLM support text recognization**: Qwen-VL naturally supports multi-lingual conversation, and it promotes end-to-end recognition of Chinese and English bi-lingual text in images.
 
37
  - **First generalist model support grounding in Chinese**: Detecting bounding boxes through open-domain language expression in both Chinese and English.
38
  - **Fine-grained recognization and understanding**: Compared to the 224 resolution currently used by other open-source LVLM, the 448 resolution promotes fine-grained text recognition, document QA, and bounding box annotation.
39
 
40
+ 目前,我们提供了 Qwen-VL 系列的两个模型:
41
+ - Qwen-VL: Qwen-VL 以 Qwen-7B 的预训练模型作为语言模型的初始化,并以 [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) 作为视觉编码器的初始化,中间加入单层随机初始化的 cross-attention,经过约1.5B的图文数据训练得到。最终图像输入分辨率为448。
42
+ - Qwen-VL-Chat: 在 Qwen-VL 的基础上,我们使用对齐机制打造了基于大语言模型的视觉AI助手Qwen-VL-Chat,其训练数据涵盖了 QWen-7B 的纯文本 SFT 数据、开源 LVLM 的 SFT 数据、数据合成和人工标注的图文对齐数据。
43
+
44
+ 如果想了解更多关于模型的信息,请点击[链接](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md)查看我们的技术备忘录。
45
+
46
  We release two models of the Qwen-VL series:
47
  - Qwen-VL: The pre-trained LVLM model uses Qwen-7B as the initialization of the LLM, and [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) as the initialization of the visual encoder. And connects them with a randomly initialized cross-attention layer. Qwen-VL was trained on about 1.5B image-text paired data. The final image input resolution is 448.
48
  - Qwen-VL-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques.
49
 
50
+ For more details about Qwen-VL, please refer to our [technical memo](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md).
51
+
52
+ ## 评测
53
 
54
+ 我们从两个角度评测了两个模型的能力:
55
+ 1. 在**英文标准 Benchmark** 上评测模型的基础任务能力。目前评测了四大类多模态任务:
56
+ - Zero-shot Caption: 评测模型在未见过数据集上的零样本图片描述能力;
57
+ - General VQA: 评测模型的通用问答能力,例如判断题、颜色、个数、类目等问答能力;
58
+ - Text-based VQA:评测模型对于图片中文字相关的识别/问答能力,例如文档问答、图表问答、文字问答等;
59
+ - Referring Expression Compression:评测模型给定物体描述画检测框的能力;
60
+
61
+ 2. **试金石 (TouchStone)**:为了评测模型整体的图文对话能力和人类对齐水平。我们为此构建了一个基于 GPT4 打分来评测 LVLM 模型的 Benchmark:TouchStone。在 TouchStone-v0.1 中:
62
+ - 评测基准总计涵盖 300+张图片、800+道题目、27个类别。包括基础属性问答、人物地标问答、影视作品问答、视觉推理、反事实推理、诗歌创作、故事写作,商品比较、图片解题等**尽可能广泛的类别**。
63
+ - 为了弥补目前 GPT4 无法直接读取图片的缺陷,我们给所有的带评测图片提供了**人工标注的充分详细描述**,并且将图片的详细描述、问题和模型的输出结果一起交给 GPT4 打分。
64
+ - 评测同时包含英文版本和中文版本。
65
+
66
+ 评测结果如下:
67
 
68
  We evaluated the model's ability from two perspectives:
69
  1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
 
85
  <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/radar.png" width="600"/>
86
  <p>
87
 
88
+ ### Zero-shot Captioning & General VQA
89
  <table>
90
  <thead>
91
  <tr>
92
  <th rowspan="2">Model type</th>
93
  <th rowspan="2">Model</th>
94
+ <th colspan="2">Zero-shot Captioning</th>
95
  <th colspan="5">General VQA</th>
96
  </tr>
97
  <tr>
 
106
  </thead>
107
  <tbody align="center">
108
  <tr>
109
+ <td rowspan="10">Generalist<br>Models</td>
110
  <td>Flamingo-9B</td>
111
  <td>-</td>
112
  <td>61.5</td>
 
193
  <td><b>78.8</b></td>
194
  <td><b>58.6</b></td>
195
  <td><b>59.3</b></td>
196
+ <td>67.1</td>
197
+ <td>35.2</td>
198
  </tr>
199
+ <!-- <tr>
200
  <td>Qwen-VL (4-shot)</td>
201
  <td>-</td>
202
  <td>-</td>
 
205
  <td>-</td>
206
  <td>-</td>
207
  <td>39.1</td>
208
+ </tr> -->
209
  <tr>
210
  <td>Qwen-VL-Chat</td>
211
+ <td>120.2</td>
212
+ <td>81.0</td>
213
+ <td>78.2</td>
214
+ <td>56.6</td>
215
+ <td>57.5</td>
216
+ <td><b>68.2</b></td>
217
+ <td><b>38.9</b></td>
218
+ </tr>
219
+ <!-- <tr>
220
  <td>Qwen-VL-Chat (4-shot)</td>
221
  <td>-</td>
222
  <td>-</td>
 
224
  <td>60.6</td>
225
  <td>-</td>
226
  <td>-</td>
227
+ <td>44.45</td>
228
+ </tr> -->
229
  <tr>
230
  <td>Previous SOTA<br>(Per Task Fine-tuning)</td>
231
  <td>-</td>
 
240
  </tbody>
241
  </table>
242
 
243
+ - 在 Zero-shot Caption 中,Qwen-VL 在 Flickr30K 数据集上取得了 **SOTA** 的结果,并在 Nocaps 数据集上取得了和 InstructBlip 可竞争的结果。
244
+ - 在 General VQA 中,Qwen-VL 取得了 LVLM 模型同等量级和设定下 **SOTA** 的结果。
245
+
246
  - For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
247
  - For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.
248
 
249
+ ### Text-oriented VQA (focuse on text understanding capabilities in images)
250
 
251
  <table>
252
  <thead>
 
314
  </tbody>
315
  </table>
316
 
317
+ - 在文字相关的识别/问答评测上,取得了当前规模下通用 LVLM 达到的最好结果。
318
+ - 分辨率对上述某几个评测非常重要,大部分 224 分辨率的开源 LVLM 模型无法完成以上评测,或只能通过切图的方式解决。Qwen-VL 将分辨率提升到 448,可以直接以端到端的方式进行以上评测。Qwen-VL 在很多任务上甚至超过了 1024 分辨率的 Pic2Struct-Large 模型。
319
+
320
  - In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
321
  - Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.
322
 
 
425
  <td><b>83.12</b></td>
426
  <td>88.25</td>
427
  <td><b>77.21</b></td>
428
+ <td>85.58</td>
429
+ <td>85.48</td>
430
  <td>78.22</td>
431
  </tr>
432
  <tr>
433
  <td>Qwen-VL-7B-Chat</td>
434
+ <td>88.55</td>
435
  <td><b>92.27</b></td>
436
  <td>84.51</td>
437
  <td>82.82</td>
438
  <td><b>88.59</b></td>
439
+ <td>76.79</td>
440
+ <td><b>85.96</b></td>
441
+ <td><b>86.32</b></td>
442
  <td>-</td>
 
 
 
 
443
  <tr>
444
  <td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
445
  <td>G-DINO-L</td>
 
480
  </tbody>
481
  </table>
482
 
483
+ - 在定位任务上,Qwen-VL 全面超过 Shikra-13B,取得了目前 Generalist LVLM 模型上在 Refcoco 上的 **SOTA**。
484
+ - Qwen-VL 并没有在任何中文定位数据上训练过,但通过中文 Caption 数据和 英文 Grounding 数据的训练,可以 Zero-shot 泛化出中文 Grounding 能力。
485
+
486
+ 我们提供了以上**所有**评测脚本以供复现我们的实验结果。请阅读 [eval/EVALUATION.md](eval/EVALUATION.md) 了解更多信息。
487
+
488
  - Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
489
  - Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.
490
 
 
492
 
493
  ### Chat evaluation
494
 
495
+ TouchStone 是一个基于 GPT4 打分来评测 LVLM 模型的图文对话能力和人类对齐水平的基准。它涵盖了 300+张图片、800+道题目、27个类别,包括基础属性、人物地标、视觉推理、诗歌创作、故事写作、商品比较、图片解题等**尽可能广泛的类别**。关于 TouchStone 的详细介绍,请参考[touchstone/README_CN.md](touchstone/README_CN.md)了解更多信息。
496
+
497
  TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.
498
 
499
  #### English evaluation
 
515
  | VisualGLM | 247.1 |
516
  | Qwen-VL-Chat | 401.2 |
517
 
518
+ Qwen-VL-Chat 模型在中英文的对齐评测中均取得当前 LVLM 模型下的最好结果。
519
+
520
  Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.
521
 
522
  ## Requirements
523
 
524
+ * python 3.8及以上版本
525
+ * pytorch 1.12及以上版本,推荐2.0及以上版本
526
+ * 建议使用CUDA 11.4及以上(GPU用户需考虑此选项)
527
+
528
  * python 3.8 and above
529
  * pytorch 1.12 and above, 2.0 and above are recommended
530
  * CUDA 11.4 and above are recommended (this is for GPU users)
531
 
532
  ## Quickstart
533
 
534
+ 我们提供简单的示例来说明如何利用 🤗 Transformers 快速使用 Qwen-VL Qwen-VL-Chat
535
+
536
+ 在开始前,请确保你已经配置好环境并安装好相关的代码包。最重要的是,确保你满足上述要求,然后安装相关的依赖库。
537
+
538
+ Below, we provide simple examples to show how to use Qwen-VL and Qwen-VL-Chat with 🤗 Transformers.
539
 
540
  Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
541
 
 
543
  pip install -r requirements.txt
544
  ```
545
 
546
+ 接下来你可以开始使用Transformers来使用我们的模型。关于视觉模块的更多用法,请参考[教程](TUTORIAL.md)
547
+
548
+ Now you can start with Transformers. More usage aboue vision encoder, please refer to [tutorial](TUTORIAL_zh.md).
549
 
550
  #### 🤗 Transformers
551
 
 
595
 
596
  ## FAQ
597
 
598
+ 如遇到问题,敬请查阅 [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
599
+
600
+ If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ.md) and the issues first to search a solution before you launch a new issue.
601
 
602
 
603
  ## License Agreement
604
 
605
+ 研究人员与开发者可使用Qwen-VL和Qwen-VL-Chat或进行二次开发。我们同样允许商业使用,具体细节请查看[LICENSE](https://github.com/QwenLM/Qwen-VL/blob/master/LICENSE)。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
606
+
607
  Researchers and developers are free to use the codes and model weights of both Qwen-VL and Qwen-VL-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
608
 
609
  ## Contact Us
610
 
611
+ 如果你想给我们的研发团队和产品团队留言,请通过邮件([email protected])联系我们。
612
+
613
  If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].
614