jklj077 commited on
Commit
b6add0f
1 Parent(s): 4dff1cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -50
README.md CHANGED
@@ -85,56 +85,7 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
85
 
86
  To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
87
 
88
- For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
89
-
90
- 1. **Install vLLM**: You can install vLLM by running the following command.
91
-
92
- ```bash
93
- pip install "vllm>=0.4.3"
94
- ```
95
-
96
- Or you can install vLLM from [source](https://github.com/vllm-project/vllm/).
97
-
98
- 2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
99
- ```json
100
- {
101
- "architectures": [
102
- "Qwen2ForCausalLM"
103
- ],
104
- // ...
105
- "vocab_size": 152064,
106
-
107
- // adding the following snippets
108
- "rope_scaling": {
109
- "factor": 4.0,
110
- "original_max_position_embeddings": 32768,
111
- "type": "yarn"
112
- }
113
- }
114
- ```
115
- This snippet enable YARN to support longer contexts.
116
-
117
- 3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
118
-
119
- ```bash
120
- python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-32B-Instruct --model path/to/weights
121
- ```
122
-
123
- Then you can access the Chat API by:
124
-
125
- ```bash
126
- curl http://localhost:8000/v1/chat/completions \
127
- -H "Content-Type: application/json" \
128
- -d '{
129
- "model": "Qwen2-32B-Instruct",
130
- "messages": [
131
- {"role": "system", "content": "You are a helpful assistant."},
132
- {"role": "user", "content": "Your Long Input Here."}
133
- ]
134
- }'
135
- ```
136
-
137
- For further usage instructions of vLLM, please refer to our [Github](https://github.com/QwenLM/Qwen2).
138
 
139
  **Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
140
 
 
85
 
86
  To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
87
 
88
+ For deployment, we recommend using vLLM. Please refer to our [Github](https://github.com/QwenLM/Qwen2.5) for usage if you are not familar with vLLM.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  **Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
91