File size: 1,624 Bytes
f9bc2c5 fc8053b f9bc2c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: other
license_name: llama-3
license_link: https://llama.meta.com/llama3/license/
tags:
- llama-3
- llama
- '3'
- 5B
---
This is just an experiment similar to that done on [chargoddard/llama3-42b-v0](https://huggingface.co/chargoddard/llama3-42b-v0). The post-pruning was fine-tuned or "healed" with QLoRA using the code DPO dataset [AlekseyKorshuk/evol-codealpaca-v1-dpo](https://huggingface.co/datasets/AlekseyKorshuk/evol-codealpaca-v1-dpo). Due to limitations, this was only trained on 3150/4935 (~64%) steps of the data. I had to restart the training about halfway through, so the logs are split in two. I am still unsure if the tokenizer is correct.
Loss: ~1.2
<img src="https://i.imgur.com/AnuMlv7.png">
<img src="https://i.imgur.com/kHXnKCU.png">
<img src="https://i.imgur.com/aHKVgqT.png">
<img src="https://i.imgur.com/KTLYnjl.png">
mergekit.yaml
```
slices:
- sources:
- model: ./Meta-Llama-3-8B-Instruct/
layer_range: [0,15]
- sources:
- model: ./Meta-Llama-3-8B-Instruct/
layer_range: [29,32]
merge_method: passthrough
dtype: bfloat16
```
ORPOConfig
```
learning_rate=5e-5,
lr_scheduler_type="cosine",
max_length=1024,
max_prompt_length=512,
overwrite_output_dir=False,
beta=0.1,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
gradient_accumulation_steps=4,
optim="paged_adamw_8bit",
num_train_epochs=1,
evaluation_strategy="steps",
eval_steps=0.02,
logging_steps=1,
warmup_steps=50,
report_to="wandb",
output_dir=out_dir_folder,
fp16=True,
save_steps=50
``` |