|
from dataclasses import dataclass |
|
from typing import Optional, List, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from transformers import LlamaModel, LlamaPreTrainedModel |
|
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING |
|
from transformers.utils import ModelOutput |
|
from transformers.utils import add_start_docstrings_to_model_forward |
|
|
|
|
|
class GatingNetwork(nn.Module): |
|
def __init__(self, in_features: int, out_features: int, bias: bool = True, temperature: float = 10, |
|
logit_scale: float = 1., hidden_dim: int = 1024, n_hidden: int = 3): |
|
super().__init__() |
|
self.temperature = temperature |
|
self.logit_scale = nn.Parameter(torch.ones(1) * logit_scale) |
|
layers = [] |
|
for _ in range(n_hidden): |
|
layers.append(nn.Linear(in_features, hidden_dim)) |
|
in_features = hidden_dim |
|
layers.append(nn.Linear(in_features, out_features, bias=bias)) |
|
self.layers = nn.ModuleList(layers) |
|
|
|
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: |
|
|
|
for i, layer in enumerate(self.layers): |
|
x = F.relu(layer(x)) if i < len(self.layers) - 1 else layer(x) |
|
|
|
x = F.softmax(x / self.temperature, dim=1) |
|
return x * self.logit_scale[0] |
|
|
|
|
|
|
|
token_pattern = [128009, 128006, 78191, 128007, 271] |
|
|
|
|
|
def find_token_for_gating(lst, ): |
|
"""Find the last occurrence of a token_pattern in a list.""" |
|
token_pattern_len = len(token_pattern) |
|
search_end = len(lst) |
|
for j in range(search_end - token_pattern_len, -1, -1): |
|
if lst[j:j + token_pattern_len] == token_pattern: |
|
return j |
|
raise ValueError("Token pattern not found in the list.") |
|
|
|
|
|
@dataclass |
|
class CustomOutput(ModelOutput): |
|
""" |
|
Base class for outputs of sentence classification models. |
|
|
|
Args: |
|
hidden_state (`Tuple[torch.FloatTensor]` of length `config.num_hidden_layers`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
prompt_embedding (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): |
|
The embeddings of the prompt tokens. |
|
gating_output (`torch.FloatTensor` of shape `(batch_size, config.num_objectives)`): |
|
The logits for the gating network. |
|
score (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): |
|
The final reward score. |
|
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): |
|
Same as score |
|
""" |
|
|
|
rewards: torch.FloatTensor = None |
|
hidden_state: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
prompt_embedding: Optional[torch.FloatTensor] = None |
|
gating_output: Optional[torch.FloatTensor] = None |
|
score: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class LlamaForRewardModelWithGating(LlamaPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = LlamaModel(config) |
|
config_dict = config.to_dict() |
|
self.num_objectives = config_dict.get("num_objectives", 19) |
|
self.regression_layer = nn.Linear(config.hidden_size, self.num_objectives, bias=False) |
|
self.post_init() |
|
|
|
I = torch.zeros(self.num_objectives, self.num_objectives) |
|
I[range(self.num_objectives), range(self.num_objectives)] = 1. |
|
self.reward_transform_matrix = nn.Parameter(I) |
|
self.reward_transform_matrix.requires_grad = False |
|
|
|
|
|
self.gating = GatingNetwork(config.hidden_size, config.num_objectives, |
|
temperature=config_dict.get("gating_temperature", 10), |
|
hidden_dim=config_dict.get("gating_hidden_dim", 1024), |
|
n_hidden=config_dict.get("gating_n_hidden", 3)) |
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> CustomOutput: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
tokens_hidden_states = transformer_outputs[0] |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(tokens_hidden_states.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
dummy_iterator = torch.arange(batch_size, device=tokens_hidden_states.device) |
|
hidden_states = tokens_hidden_states[dummy_iterator, sequence_lengths] |
|
assert hidden_states.shape == (batch_size, self.config.hidden_size) |
|
rewards = self.regression_layer(hidden_states) |
|
|
|
gating_token_positions = [find_token_for_gating(ids.tolist()) for ids in input_ids] |
|
prompt_embedding = tokens_hidden_states[dummy_iterator, gating_token_positions, :] |
|
gating_output = self.gating(prompt_embedding) |
|
|
|
rewards_adjusted = rewards @ self.reward_transform_matrix |
|
score = torch.sum(gating_output * rewards_adjusted, dim=1) |
|
|
|
return CustomOutput( |
|
rewards=rewards, |
|
hidden_state=hidden_states, |
|
prompt_embedding=prompt_embedding, |
|
gating_output=gating_output, |
|
score=score, |
|
logits=score, |
|
) |
|
|