RMHalak commited on
Commit
03a1f14
1 Parent(s): 638b3ed

Task: SequenceClassification

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "score",
19
+ "classifier",
20
+ "score"
21
+ ],
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "k_proj",
28
+ "v_proj",
29
+ "q_proj",
30
+ "gate_proj",
31
+ "up_proj",
32
+ "o_proj",
33
+ "down_proj"
34
+ ],
35
+ "task_type": "SEQ_CLS",
36
+ "use_dora": false,
37
+ "use_rslora": false
38
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca1f4869e7d71147ff96b537453aebe90a2ce464b9da6b0b90725815f6fc74f5
3
+ size 42019072
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
trainer_state-mistral-bf16-QLORA-super_glue-copa-sequence_classification.json ADDED
@@ -0,0 +1,842 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 1,
6
+ "global_step": 50,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.2,
13
+ "grad_norm": 322.0,
14
+ "learning_rate": 2.5e-05,
15
+ "loss": 3.1768,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.2,
20
+ "eval_accuracy": 0.48,
21
+ "eval_loss": 3.40401029586792,
22
+ "eval_runtime": 0.8882,
23
+ "eval_samples_per_second": 112.593,
24
+ "eval_steps_per_second": 3.378,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.4,
29
+ "grad_norm": 356.0,
30
+ "learning_rate": 5e-05,
31
+ "loss": 3.3525,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.4,
36
+ "eval_accuracy": 0.61,
37
+ "eval_loss": 1.4448237419128418,
38
+ "eval_runtime": 0.8811,
39
+ "eval_samples_per_second": 113.499,
40
+ "eval_steps_per_second": 3.405,
41
+ "step": 2
42
+ },
43
+ {
44
+ "epoch": 0.6,
45
+ "grad_norm": 255.0,
46
+ "learning_rate": 4.8958333333333335e-05,
47
+ "loss": 1.5749,
48
+ "step": 3
49
+ },
50
+ {
51
+ "epoch": 0.6,
52
+ "eval_accuracy": 0.63,
53
+ "eval_loss": 2.0604140758514404,
54
+ "eval_runtime": 0.8824,
55
+ "eval_samples_per_second": 113.329,
56
+ "eval_steps_per_second": 3.4,
57
+ "step": 3
58
+ },
59
+ {
60
+ "epoch": 0.8,
61
+ "grad_norm": 268.0,
62
+ "learning_rate": 4.791666666666667e-05,
63
+ "loss": 2.3496,
64
+ "step": 4
65
+ },
66
+ {
67
+ "epoch": 0.8,
68
+ "eval_accuracy": 0.94,
69
+ "eval_loss": 0.4080352485179901,
70
+ "eval_runtime": 0.8844,
71
+ "eval_samples_per_second": 113.068,
72
+ "eval_steps_per_second": 3.392,
73
+ "step": 4
74
+ },
75
+ {
76
+ "epoch": 1.0,
77
+ "grad_norm": 139.0,
78
+ "learning_rate": 4.6875e-05,
79
+ "loss": 1.0271,
80
+ "step": 5
81
+ },
82
+ {
83
+ "epoch": 1.0,
84
+ "eval_accuracy": 0.84,
85
+ "eval_loss": 0.4767504632472992,
86
+ "eval_runtime": 0.8816,
87
+ "eval_samples_per_second": 113.433,
88
+ "eval_steps_per_second": 3.403,
89
+ "step": 5
90
+ },
91
+ {
92
+ "epoch": 1.2,
93
+ "grad_norm": 141.0,
94
+ "learning_rate": 4.5833333333333334e-05,
95
+ "loss": 1.0716,
96
+ "step": 6
97
+ },
98
+ {
99
+ "epoch": 1.2,
100
+ "eval_accuracy": 0.91,
101
+ "eval_loss": 0.3883032202720642,
102
+ "eval_runtime": 0.8815,
103
+ "eval_samples_per_second": 113.446,
104
+ "eval_steps_per_second": 3.403,
105
+ "step": 6
106
+ },
107
+ {
108
+ "epoch": 1.4,
109
+ "grad_norm": 155.0,
110
+ "learning_rate": 4.4791666666666673e-05,
111
+ "loss": 1.3541,
112
+ "step": 7
113
+ },
114
+ {
115
+ "epoch": 1.4,
116
+ "eval_accuracy": 0.95,
117
+ "eval_loss": 0.205933079123497,
118
+ "eval_runtime": 0.8784,
119
+ "eval_samples_per_second": 113.844,
120
+ "eval_steps_per_second": 3.415,
121
+ "step": 7
122
+ },
123
+ {
124
+ "epoch": 1.6,
125
+ "grad_norm": 47.75,
126
+ "learning_rate": 4.375e-05,
127
+ "loss": 0.6127,
128
+ "step": 8
129
+ },
130
+ {
131
+ "epoch": 1.6,
132
+ "eval_accuracy": 0.97,
133
+ "eval_loss": 0.23208393156528473,
134
+ "eval_runtime": 0.8781,
135
+ "eval_samples_per_second": 113.885,
136
+ "eval_steps_per_second": 3.417,
137
+ "step": 8
138
+ },
139
+ {
140
+ "epoch": 1.8,
141
+ "grad_norm": 24.25,
142
+ "learning_rate": 4.270833333333333e-05,
143
+ "loss": 0.2954,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 1.8,
148
+ "eval_accuracy": 0.96,
149
+ "eval_loss": 0.2501452565193176,
150
+ "eval_runtime": 0.8786,
151
+ "eval_samples_per_second": 113.82,
152
+ "eval_steps_per_second": 3.415,
153
+ "step": 9
154
+ },
155
+ {
156
+ "epoch": 2.0,
157
+ "grad_norm": 10.6875,
158
+ "learning_rate": 4.166666666666667e-05,
159
+ "loss": 0.224,
160
+ "step": 10
161
+ },
162
+ {
163
+ "epoch": 2.0,
164
+ "eval_accuracy": 0.96,
165
+ "eval_loss": 0.2233298271894455,
166
+ "eval_runtime": 0.8812,
167
+ "eval_samples_per_second": 113.478,
168
+ "eval_steps_per_second": 3.404,
169
+ "step": 10
170
+ },
171
+ {
172
+ "epoch": 2.2,
173
+ "grad_norm": 29.125,
174
+ "learning_rate": 4.0625000000000005e-05,
175
+ "loss": 0.1923,
176
+ "step": 11
177
+ },
178
+ {
179
+ "epoch": 2.2,
180
+ "eval_accuracy": 0.96,
181
+ "eval_loss": 0.20252424478530884,
182
+ "eval_runtime": 0.8794,
183
+ "eval_samples_per_second": 113.715,
184
+ "eval_steps_per_second": 3.411,
185
+ "step": 11
186
+ },
187
+ {
188
+ "epoch": 2.4,
189
+ "grad_norm": 9.6875,
190
+ "learning_rate": 3.958333333333333e-05,
191
+ "loss": 0.1546,
192
+ "step": 12
193
+ },
194
+ {
195
+ "epoch": 2.4,
196
+ "eval_accuracy": 0.95,
197
+ "eval_loss": 0.22954002022743225,
198
+ "eval_runtime": 0.8783,
199
+ "eval_samples_per_second": 113.856,
200
+ "eval_steps_per_second": 3.416,
201
+ "step": 12
202
+ },
203
+ {
204
+ "epoch": 2.6,
205
+ "grad_norm": 7.25,
206
+ "learning_rate": 3.854166666666667e-05,
207
+ "loss": 0.0172,
208
+ "step": 13
209
+ },
210
+ {
211
+ "epoch": 2.6,
212
+ "eval_accuracy": 0.95,
213
+ "eval_loss": 0.24703644216060638,
214
+ "eval_runtime": 0.8783,
215
+ "eval_samples_per_second": 113.861,
216
+ "eval_steps_per_second": 3.416,
217
+ "step": 13
218
+ },
219
+ {
220
+ "epoch": 2.8,
221
+ "grad_norm": 2.90625,
222
+ "learning_rate": 3.7500000000000003e-05,
223
+ "loss": 0.0103,
224
+ "step": 14
225
+ },
226
+ {
227
+ "epoch": 2.8,
228
+ "eval_accuracy": 0.94,
229
+ "eval_loss": 0.2578713297843933,
230
+ "eval_runtime": 0.878,
231
+ "eval_samples_per_second": 113.89,
232
+ "eval_steps_per_second": 3.417,
233
+ "step": 14
234
+ },
235
+ {
236
+ "epoch": 3.0,
237
+ "grad_norm": 16.875,
238
+ "learning_rate": 3.6458333333333336e-05,
239
+ "loss": 0.1505,
240
+ "step": 15
241
+ },
242
+ {
243
+ "epoch": 3.0,
244
+ "eval_accuracy": 0.95,
245
+ "eval_loss": 0.2686871290206909,
246
+ "eval_runtime": 0.8777,
247
+ "eval_samples_per_second": 113.935,
248
+ "eval_steps_per_second": 3.418,
249
+ "step": 15
250
+ },
251
+ {
252
+ "epoch": 3.2,
253
+ "grad_norm": 9.6875,
254
+ "learning_rate": 3.541666666666667e-05,
255
+ "loss": 0.0405,
256
+ "step": 16
257
+ },
258
+ {
259
+ "epoch": 3.2,
260
+ "eval_accuracy": 0.96,
261
+ "eval_loss": 0.24810832738876343,
262
+ "eval_runtime": 0.8294,
263
+ "eval_samples_per_second": 120.563,
264
+ "eval_steps_per_second": 3.617,
265
+ "step": 16
266
+ },
267
+ {
268
+ "epoch": 3.4,
269
+ "grad_norm": 7.25,
270
+ "learning_rate": 3.4375e-05,
271
+ "loss": 0.013,
272
+ "step": 17
273
+ },
274
+ {
275
+ "epoch": 3.4,
276
+ "eval_accuracy": 0.97,
277
+ "eval_loss": 0.21606233716011047,
278
+ "eval_runtime": 0.8769,
279
+ "eval_samples_per_second": 114.041,
280
+ "eval_steps_per_second": 3.421,
281
+ "step": 17
282
+ },
283
+ {
284
+ "epoch": 3.6,
285
+ "grad_norm": 4.125,
286
+ "learning_rate": 3.3333333333333335e-05,
287
+ "loss": 0.0077,
288
+ "step": 18
289
+ },
290
+ {
291
+ "epoch": 3.6,
292
+ "eval_accuracy": 0.97,
293
+ "eval_loss": 0.22405938804149628,
294
+ "eval_runtime": 0.8796,
295
+ "eval_samples_per_second": 113.689,
296
+ "eval_steps_per_second": 3.411,
297
+ "step": 18
298
+ },
299
+ {
300
+ "epoch": 3.8,
301
+ "grad_norm": 7.8125,
302
+ "learning_rate": 3.229166666666667e-05,
303
+ "loss": 0.0257,
304
+ "step": 19
305
+ },
306
+ {
307
+ "epoch": 3.8,
308
+ "eval_accuracy": 0.96,
309
+ "eval_loss": 0.24976569414138794,
310
+ "eval_runtime": 0.8791,
311
+ "eval_samples_per_second": 113.757,
312
+ "eval_steps_per_second": 3.413,
313
+ "step": 19
314
+ },
315
+ {
316
+ "epoch": 4.0,
317
+ "grad_norm": 0.46875,
318
+ "learning_rate": 3.125e-05,
319
+ "loss": 0.0006,
320
+ "step": 20
321
+ },
322
+ {
323
+ "epoch": 4.0,
324
+ "eval_accuracy": 0.96,
325
+ "eval_loss": 0.2608669400215149,
326
+ "eval_runtime": 0.8785,
327
+ "eval_samples_per_second": 113.834,
328
+ "eval_steps_per_second": 3.415,
329
+ "step": 20
330
+ },
331
+ {
332
+ "epoch": 4.2,
333
+ "grad_norm": 4.03125,
334
+ "learning_rate": 3.0208333333333334e-05,
335
+ "loss": 0.006,
336
+ "step": 21
337
+ },
338
+ {
339
+ "epoch": 4.2,
340
+ "eval_accuracy": 0.96,
341
+ "eval_loss": 0.2746453583240509,
342
+ "eval_runtime": 0.8776,
343
+ "eval_samples_per_second": 113.943,
344
+ "eval_steps_per_second": 3.418,
345
+ "step": 21
346
+ },
347
+ {
348
+ "epoch": 4.4,
349
+ "grad_norm": 0.5390625,
350
+ "learning_rate": 2.916666666666667e-05,
351
+ "loss": 0.0009,
352
+ "step": 22
353
+ },
354
+ {
355
+ "epoch": 4.4,
356
+ "eval_accuracy": 0.96,
357
+ "eval_loss": 0.28063732385635376,
358
+ "eval_runtime": 0.7782,
359
+ "eval_samples_per_second": 128.507,
360
+ "eval_steps_per_second": 3.855,
361
+ "step": 22
362
+ },
363
+ {
364
+ "epoch": 4.6,
365
+ "grad_norm": 0.76171875,
366
+ "learning_rate": 2.8125000000000003e-05,
367
+ "loss": 0.0009,
368
+ "step": 23
369
+ },
370
+ {
371
+ "epoch": 4.6,
372
+ "eval_accuracy": 0.96,
373
+ "eval_loss": 0.27202337980270386,
374
+ "eval_runtime": 0.8786,
375
+ "eval_samples_per_second": 113.821,
376
+ "eval_steps_per_second": 3.415,
377
+ "step": 23
378
+ },
379
+ {
380
+ "epoch": 4.8,
381
+ "grad_norm": 0.02099609375,
382
+ "learning_rate": 2.7083333333333332e-05,
383
+ "loss": 0.0001,
384
+ "step": 24
385
+ },
386
+ {
387
+ "epoch": 4.8,
388
+ "eval_accuracy": 0.97,
389
+ "eval_loss": 0.27136754989624023,
390
+ "eval_runtime": 0.8299,
391
+ "eval_samples_per_second": 120.491,
392
+ "eval_steps_per_second": 3.615,
393
+ "step": 24
394
+ },
395
+ {
396
+ "epoch": 5.0,
397
+ "grad_norm": 0.053466796875,
398
+ "learning_rate": 2.604166666666667e-05,
399
+ "loss": 0.0001,
400
+ "step": 25
401
+ },
402
+ {
403
+ "epoch": 5.0,
404
+ "eval_accuracy": 0.97,
405
+ "eval_loss": 0.2715064287185669,
406
+ "eval_runtime": 0.8782,
407
+ "eval_samples_per_second": 113.866,
408
+ "eval_steps_per_second": 3.416,
409
+ "step": 25
410
+ },
411
+ {
412
+ "epoch": 5.2,
413
+ "grad_norm": 0.022216796875,
414
+ "learning_rate": 2.5e-05,
415
+ "loss": 0.0001,
416
+ "step": 26
417
+ },
418
+ {
419
+ "epoch": 5.2,
420
+ "eval_accuracy": 0.97,
421
+ "eval_loss": 0.2780764698982239,
422
+ "eval_runtime": 0.8795,
423
+ "eval_samples_per_second": 113.703,
424
+ "eval_steps_per_second": 3.411,
425
+ "step": 26
426
+ },
427
+ {
428
+ "epoch": 5.4,
429
+ "grad_norm": 0.049560546875,
430
+ "learning_rate": 2.3958333333333334e-05,
431
+ "loss": 0.0001,
432
+ "step": 27
433
+ },
434
+ {
435
+ "epoch": 5.4,
436
+ "eval_accuracy": 0.97,
437
+ "eval_loss": 0.2780400514602661,
438
+ "eval_runtime": 0.8785,
439
+ "eval_samples_per_second": 113.827,
440
+ "eval_steps_per_second": 3.415,
441
+ "step": 27
442
+ },
443
+ {
444
+ "epoch": 5.6,
445
+ "grad_norm": 0.09423828125,
446
+ "learning_rate": 2.2916666666666667e-05,
447
+ "loss": 0.0001,
448
+ "step": 28
449
+ },
450
+ {
451
+ "epoch": 5.6,
452
+ "eval_accuracy": 0.97,
453
+ "eval_loss": 0.2820666432380676,
454
+ "eval_runtime": 0.8798,
455
+ "eval_samples_per_second": 113.66,
456
+ "eval_steps_per_second": 3.41,
457
+ "step": 28
458
+ },
459
+ {
460
+ "epoch": 5.8,
461
+ "grad_norm": 0.1044921875,
462
+ "learning_rate": 2.1875e-05,
463
+ "loss": 0.0002,
464
+ "step": 29
465
+ },
466
+ {
467
+ "epoch": 5.8,
468
+ "eval_accuracy": 0.97,
469
+ "eval_loss": 0.28806641697883606,
470
+ "eval_runtime": 0.8793,
471
+ "eval_samples_per_second": 113.725,
472
+ "eval_steps_per_second": 3.412,
473
+ "step": 29
474
+ },
475
+ {
476
+ "epoch": 6.0,
477
+ "grad_norm": 0.81640625,
478
+ "learning_rate": 2.0833333333333336e-05,
479
+ "loss": 0.0009,
480
+ "step": 30
481
+ },
482
+ {
483
+ "epoch": 6.0,
484
+ "eval_accuracy": 0.97,
485
+ "eval_loss": 0.2865469455718994,
486
+ "eval_runtime": 0.8788,
487
+ "eval_samples_per_second": 113.785,
488
+ "eval_steps_per_second": 3.414,
489
+ "step": 30
490
+ },
491
+ {
492
+ "epoch": 6.2,
493
+ "grad_norm": 0.0322265625,
494
+ "learning_rate": 1.9791666666666665e-05,
495
+ "loss": 0.0,
496
+ "step": 31
497
+ },
498
+ {
499
+ "epoch": 6.2,
500
+ "eval_accuracy": 0.97,
501
+ "eval_loss": 0.28712454438209534,
502
+ "eval_runtime": 0.8768,
503
+ "eval_samples_per_second": 114.056,
504
+ "eval_steps_per_second": 3.422,
505
+ "step": 31
506
+ },
507
+ {
508
+ "epoch": 6.4,
509
+ "grad_norm": 0.0164794921875,
510
+ "learning_rate": 1.8750000000000002e-05,
511
+ "loss": 0.0,
512
+ "step": 32
513
+ },
514
+ {
515
+ "epoch": 6.4,
516
+ "eval_accuracy": 0.97,
517
+ "eval_loss": 0.2948058247566223,
518
+ "eval_runtime": 0.8275,
519
+ "eval_samples_per_second": 120.84,
520
+ "eval_steps_per_second": 3.625,
521
+ "step": 32
522
+ },
523
+ {
524
+ "epoch": 6.6,
525
+ "grad_norm": 0.007049560546875,
526
+ "learning_rate": 1.7708333333333335e-05,
527
+ "loss": 0.0,
528
+ "step": 33
529
+ },
530
+ {
531
+ "epoch": 6.6,
532
+ "eval_accuracy": 0.97,
533
+ "eval_loss": 0.29762688279151917,
534
+ "eval_runtime": 0.8798,
535
+ "eval_samples_per_second": 113.665,
536
+ "eval_steps_per_second": 3.41,
537
+ "step": 33
538
+ },
539
+ {
540
+ "epoch": 6.8,
541
+ "grad_norm": 0.011474609375,
542
+ "learning_rate": 1.6666666666666667e-05,
543
+ "loss": 0.0,
544
+ "step": 34
545
+ },
546
+ {
547
+ "epoch": 6.8,
548
+ "eval_accuracy": 0.97,
549
+ "eval_loss": 0.3028261065483093,
550
+ "eval_runtime": 0.8782,
551
+ "eval_samples_per_second": 113.869,
552
+ "eval_steps_per_second": 3.416,
553
+ "step": 34
554
+ },
555
+ {
556
+ "epoch": 7.0,
557
+ "grad_norm": 0.01104736328125,
558
+ "learning_rate": 1.5625e-05,
559
+ "loss": 0.0,
560
+ "step": 35
561
+ },
562
+ {
563
+ "epoch": 7.0,
564
+ "eval_accuracy": 0.97,
565
+ "eval_loss": 0.2990228235721588,
566
+ "eval_runtime": 0.8803,
567
+ "eval_samples_per_second": 113.594,
568
+ "eval_steps_per_second": 3.408,
569
+ "step": 35
570
+ },
571
+ {
572
+ "epoch": 7.2,
573
+ "grad_norm": 0.0157470703125,
574
+ "learning_rate": 1.4583333333333335e-05,
575
+ "loss": 0.0,
576
+ "step": 36
577
+ },
578
+ {
579
+ "epoch": 7.2,
580
+ "eval_accuracy": 0.97,
581
+ "eval_loss": 0.2988300621509552,
582
+ "eval_runtime": 0.8818,
583
+ "eval_samples_per_second": 113.408,
584
+ "eval_steps_per_second": 3.402,
585
+ "step": 36
586
+ },
587
+ {
588
+ "epoch": 7.4,
589
+ "grad_norm": 0.007537841796875,
590
+ "learning_rate": 1.3541666666666666e-05,
591
+ "loss": 0.0,
592
+ "step": 37
593
+ },
594
+ {
595
+ "epoch": 7.4,
596
+ "eval_accuracy": 0.97,
597
+ "eval_loss": 0.30536001920700073,
598
+ "eval_runtime": 0.8803,
599
+ "eval_samples_per_second": 113.599,
600
+ "eval_steps_per_second": 3.408,
601
+ "step": 37
602
+ },
603
+ {
604
+ "epoch": 7.6,
605
+ "grad_norm": 0.00787353515625,
606
+ "learning_rate": 1.25e-05,
607
+ "loss": 0.0,
608
+ "step": 38
609
+ },
610
+ {
611
+ "epoch": 7.6,
612
+ "eval_accuracy": 0.97,
613
+ "eval_loss": 0.3094402849674225,
614
+ "eval_runtime": 0.8831,
615
+ "eval_samples_per_second": 113.232,
616
+ "eval_steps_per_second": 3.397,
617
+ "step": 38
618
+ },
619
+ {
620
+ "epoch": 7.8,
621
+ "grad_norm": 0.0137939453125,
622
+ "learning_rate": 1.1458333333333333e-05,
623
+ "loss": 0.0,
624
+ "step": 39
625
+ },
626
+ {
627
+ "epoch": 7.8,
628
+ "eval_accuracy": 0.97,
629
+ "eval_loss": 0.30698367953300476,
630
+ "eval_runtime": 0.8807,
631
+ "eval_samples_per_second": 113.552,
632
+ "eval_steps_per_second": 3.407,
633
+ "step": 39
634
+ },
635
+ {
636
+ "epoch": 8.0,
637
+ "grad_norm": 0.004486083984375,
638
+ "learning_rate": 1.0416666666666668e-05,
639
+ "loss": 0.0,
640
+ "step": 40
641
+ },
642
+ {
643
+ "epoch": 8.0,
644
+ "eval_accuracy": 0.97,
645
+ "eval_loss": 0.30960360169410706,
646
+ "eval_runtime": 0.8843,
647
+ "eval_samples_per_second": 113.08,
648
+ "eval_steps_per_second": 3.392,
649
+ "step": 40
650
+ },
651
+ {
652
+ "epoch": 8.2,
653
+ "grad_norm": 0.0017242431640625,
654
+ "learning_rate": 9.375000000000001e-06,
655
+ "loss": 0.0,
656
+ "step": 41
657
+ },
658
+ {
659
+ "epoch": 8.2,
660
+ "eval_accuracy": 0.97,
661
+ "eval_loss": 0.30940884351730347,
662
+ "eval_runtime": 0.8779,
663
+ "eval_samples_per_second": 113.904,
664
+ "eval_steps_per_second": 3.417,
665
+ "step": 41
666
+ },
667
+ {
668
+ "epoch": 8.4,
669
+ "grad_norm": 0.01531982421875,
670
+ "learning_rate": 8.333333333333334e-06,
671
+ "loss": 0.0,
672
+ "step": 42
673
+ },
674
+ {
675
+ "epoch": 8.4,
676
+ "eval_accuracy": 0.97,
677
+ "eval_loss": 0.3099077045917511,
678
+ "eval_runtime": 0.881,
679
+ "eval_samples_per_second": 113.509,
680
+ "eval_steps_per_second": 3.405,
681
+ "step": 42
682
+ },
683
+ {
684
+ "epoch": 8.6,
685
+ "grad_norm": 0.00543212890625,
686
+ "learning_rate": 7.2916666666666674e-06,
687
+ "loss": 0.0,
688
+ "step": 43
689
+ },
690
+ {
691
+ "epoch": 8.6,
692
+ "eval_accuracy": 0.97,
693
+ "eval_loss": 0.3061915338039398,
694
+ "eval_runtime": 0.881,
695
+ "eval_samples_per_second": 113.509,
696
+ "eval_steps_per_second": 3.405,
697
+ "step": 43
698
+ },
699
+ {
700
+ "epoch": 8.8,
701
+ "grad_norm": 0.037353515625,
702
+ "learning_rate": 6.25e-06,
703
+ "loss": 0.0,
704
+ "step": 44
705
+ },
706
+ {
707
+ "epoch": 8.8,
708
+ "eval_accuracy": 0.97,
709
+ "eval_loss": 0.30655530095100403,
710
+ "eval_runtime": 0.8805,
711
+ "eval_samples_per_second": 113.566,
712
+ "eval_steps_per_second": 3.407,
713
+ "step": 44
714
+ },
715
+ {
716
+ "epoch": 9.0,
717
+ "grad_norm": 0.0045166015625,
718
+ "learning_rate": 5.208333333333334e-06,
719
+ "loss": 0.0,
720
+ "step": 45
721
+ },
722
+ {
723
+ "epoch": 9.0,
724
+ "eval_accuracy": 0.97,
725
+ "eval_loss": 0.31099575757980347,
726
+ "eval_runtime": 0.8807,
727
+ "eval_samples_per_second": 113.551,
728
+ "eval_steps_per_second": 3.407,
729
+ "step": 45
730
+ },
731
+ {
732
+ "epoch": 9.2,
733
+ "grad_norm": 0.0050048828125,
734
+ "learning_rate": 4.166666666666667e-06,
735
+ "loss": 0.0,
736
+ "step": 46
737
+ },
738
+ {
739
+ "epoch": 9.2,
740
+ "eval_accuracy": 0.97,
741
+ "eval_loss": 0.30695563554763794,
742
+ "eval_runtime": 0.883,
743
+ "eval_samples_per_second": 113.255,
744
+ "eval_steps_per_second": 3.398,
745
+ "step": 46
746
+ },
747
+ {
748
+ "epoch": 9.4,
749
+ "grad_norm": 0.0185546875,
750
+ "learning_rate": 3.125e-06,
751
+ "loss": 0.0,
752
+ "step": 47
753
+ },
754
+ {
755
+ "epoch": 9.4,
756
+ "eval_accuracy": 0.97,
757
+ "eval_loss": 0.30812981724739075,
758
+ "eval_runtime": 0.8803,
759
+ "eval_samples_per_second": 113.6,
760
+ "eval_steps_per_second": 3.408,
761
+ "step": 47
762
+ },
763
+ {
764
+ "epoch": 9.6,
765
+ "grad_norm": 0.01708984375,
766
+ "learning_rate": 2.0833333333333334e-06,
767
+ "loss": 0.0,
768
+ "step": 48
769
+ },
770
+ {
771
+ "epoch": 9.6,
772
+ "eval_accuracy": 0.97,
773
+ "eval_loss": 0.3078652322292328,
774
+ "eval_runtime": 0.8802,
775
+ "eval_samples_per_second": 113.616,
776
+ "eval_steps_per_second": 3.408,
777
+ "step": 48
778
+ },
779
+ {
780
+ "epoch": 9.8,
781
+ "grad_norm": 0.0048828125,
782
+ "learning_rate": 1.0416666666666667e-06,
783
+ "loss": 0.0,
784
+ "step": 49
785
+ },
786
+ {
787
+ "epoch": 9.8,
788
+ "eval_accuracy": 0.97,
789
+ "eval_loss": 0.3103065490722656,
790
+ "eval_runtime": 0.8796,
791
+ "eval_samples_per_second": 113.687,
792
+ "eval_steps_per_second": 3.411,
793
+ "step": 49
794
+ },
795
+ {
796
+ "epoch": 10.0,
797
+ "grad_norm": 0.01007080078125,
798
+ "learning_rate": 0.0,
799
+ "loss": 0.0,
800
+ "step": 50
801
+ },
802
+ {
803
+ "epoch": 10.0,
804
+ "eval_accuracy": 0.97,
805
+ "eval_loss": 0.30706679821014404,
806
+ "eval_runtime": 0.8797,
807
+ "eval_samples_per_second": 113.67,
808
+ "eval_steps_per_second": 3.41,
809
+ "step": 50
810
+ },
811
+ {
812
+ "epoch": 10.0,
813
+ "step": 50,
814
+ "total_flos": 9252941261176832.0,
815
+ "train_loss": 0.31321177054725013,
816
+ "train_runtime": 130.5649,
817
+ "train_samples_per_second": 30.636,
818
+ "train_steps_per_second": 0.383
819
+ }
820
+ ],
821
+ "logging_steps": 1,
822
+ "max_steps": 50,
823
+ "num_input_tokens_seen": 0,
824
+ "num_train_epochs": 10,
825
+ "save_steps": 500,
826
+ "stateful_callbacks": {
827
+ "TrainerControl": {
828
+ "args": {
829
+ "should_epoch_stop": false,
830
+ "should_evaluate": false,
831
+ "should_log": false,
832
+ "should_save": false,
833
+ "should_training_stop": false
834
+ },
835
+ "attributes": {}
836
+ }
837
+ },
838
+ "total_flos": 9252941261176832.0,
839
+ "train_batch_size": 10,
840
+ "trial_name": null,
841
+ "trial_params": null
842
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f26f94764924d5fe0402a92da76d7633ad9437099099e3f68aa6df3dbb62340
3
+ size 5176