--- license: apache-2.0 library_name: peft tags: - summarization - generated_from_trainer datasets: - gov_report_summarization_dataset metrics: - rouge base_model: google/flan-t5-base model-index: - name: flan-t5-base-finetuned-govReport-3072 results: [] --- # flan-t5-base-finetuned-govReport-3072 This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the gov_report_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.042 - Rouge2: 0.0216 - Rougel: 0.0379 - Rougelsum: 0.0406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 0.0 | 1.0 | 250 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | | 0.0 | 2.0 | 500 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | | 0.0 | 3.0 | 750 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | | 0.0 | 4.0 | 1000 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | | 0.0 | 5.0 | 1250 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | | 0.0 | 6.0 | 1500 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | | 0.0 | 7.0 | 1750 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | | 0.0 | 8.0 | 2000 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | | 0.0 | 9.0 | 2250 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | | 0.0 | 10.0 | 2500 | nan | 0.042 | 0.0216 | 0.0379 | 0.0406 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1