r4j4n commited on
Commit
996c3b8
β€’
1 Parent(s): 14d5daa

πŸ€—πŸ€—πŸ€—πŸ€—

Browse files
Files changed (1) hide show
  1. README.md +38 -0
README.md CHANGED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # NepaliBERT(Phase 1)
3
+ NEPALIBERT is a state-of-the-art language model for Nepali based on the BERT model. The model is trained using a masked language modeling (MLM).
4
+
5
+ # Loading the model and tokenizer
6
+ 1. clone the model repo
7
+ ```
8
+ git lfs install
9
+ git clone https://huggingface.co/Rajan/NepaliBERT
10
+ ```
11
+ 2. Loading the Tokenizer
12
+ ```
13
+ from transformers import BertTokenizer
14
+ vocab_file_dir = './NepaliBERT/'
15
+ tokenizer = BertTokenizer.from_pretrained(vocab_file_dir,
16
+ strip_accents=False,
17
+ clean_text=False )
18
+ ```
19
+ 3. Loading the model:
20
+ ```
21
+ from transformers import BertForMaskedLM
22
+ model = BertForMaskedLM.from_pretrained('./NepaliBERT')
23
+ ```
24
+
25
+ The easiest way to check whether our language model is learning anything interesting is via the ```FillMaskPipeline```.
26
+
27
+ Pipelines are simple wrappers around tokenizers and models, and the 'fill-mask' one will let you input a sequence containing a masked token (here, [mask]) and return a list of the most probable filled sequences, with their probabilities.
28
+
29
+ ```
30
+ from transformers import pipeline
31
+
32
+ fill_mask = pipeline(
33
+ "fill-mask",
34
+ model=model,
35
+ tokenizer=tokenizer
36
+ )
37
+ ```
38
+ For more info visit the [GITHUBπŸ€—](https://github.com/R4j4n/NepaliBERT)