Rajan Ghimire
commited on
Commit
•
c3cfb6a
1
Parent(s):
ab2290c
ADD pos
Browse files
Test.ipynb
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 31,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch\n",
|
10 |
+
"import numpy as np\n",
|
11 |
+
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
|
12 |
+
"max_len = 45"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 32,
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"tag2idx = {'X': 0,\n",
|
22 |
+
" 'YM': 1,\n",
|
23 |
+
" '[CLS]': 2,\n",
|
24 |
+
" 'DUM': 3,\n",
|
25 |
+
" 'VBF': 4,\n",
|
26 |
+
" 'RP': 5,\n",
|
27 |
+
" 'VBKO': 6,\n",
|
28 |
+
" 'CS': 7,\n",
|
29 |
+
" 'VBX': 8,\n",
|
30 |
+
" 'VBNE': 9,\n",
|
31 |
+
" 'CC': 10,\n",
|
32 |
+
" 'Unknown': 11,\n",
|
33 |
+
" 'PKO': 12,\n",
|
34 |
+
" 'JJM': 13,\n",
|
35 |
+
" 'PLE': 14,\n",
|
36 |
+
" 'VBO': 15,\n",
|
37 |
+
" 'HRU': 16,\n",
|
38 |
+
" 'YF': 17,\n",
|
39 |
+
" 'NN': 18,\n",
|
40 |
+
" 'YQ': 19,\n",
|
41 |
+
" 'VBI': 20,\n",
|
42 |
+
" '[SEP]': 21,\n",
|
43 |
+
" 'JJ': 22,\n",
|
44 |
+
" 'POP': 23,\n",
|
45 |
+
" 'PLAI': 24,\n",
|
46 |
+
" 'RBO': 25,\n",
|
47 |
+
" 'PP': 26,\n",
|
48 |
+
" 'CD': 27,\n",
|
49 |
+
" 'NNP': 28}\n",
|
50 |
+
"\n",
|
51 |
+
"# Mapping index to name\n",
|
52 |
+
"tag2name={tag2idx[key] : key for key in tag2idx.keys()}\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 33,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"tag_2_nees = {'NN': 'Noun',\n",
|
62 |
+
"'JJ': 'Normal/Unmarked Adjective', \n",
|
63 |
+
"'NNP': 'Noun Plural',\n",
|
64 |
+
"'POP': 'Other Postpositions',\n",
|
65 |
+
"'PKO': 'Ko-Postpositions', \n",
|
66 |
+
"'YF': 'Sentence-final Punctuation',\n",
|
67 |
+
"'CD': 'Cardinal Digits',\n",
|
68 |
+
"'PLE':'Postpositions(Le- postpositions)',\n",
|
69 |
+
"'VBF': 'Finite Verb', \n",
|
70 |
+
"'HRU': 'Plural Marker',\n",
|
71 |
+
"'YM': 'Sentence-medial punctuation',\n",
|
72 |
+
"'VBX': 'Auxiliary Verb',\n",
|
73 |
+
"'VBKO': 'Verb aspectual participle',\n",
|
74 |
+
"'CC': 'Coordinating conjunction',\n",
|
75 |
+
" 'DUM':'Pronoun unmarked demonstrative',\n",
|
76 |
+
" 'VBNE': 'Verb(Prospective participle)',\n",
|
77 |
+
" 'VBO':'Other participle verb',\n",
|
78 |
+
"'PLAI': 'Postpositions(Lai-Postpositions)',\n",
|
79 |
+
" 'RBO': 'Adverb(Other Adverb)',\n",
|
80 |
+
" 'VBI': 'Verb Infinitive',\n",
|
81 |
+
" 'YQ': 'Quotation Marks',\n",
|
82 |
+
" 'PP':'Possessive pronoun',\n",
|
83 |
+
" 'JJM': 'Marked adjective',\n",
|
84 |
+
" 'CS': 'Subordinating conjunction appearing before/after the clause it subordinates',\n",
|
85 |
+
" 'RP': 'Particle'}"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 34,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"# ! pip install transformers\n"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": 35,
|
100 |
+
"metadata": {},
|
101 |
+
"outputs": [],
|
102 |
+
"source": [
|
103 |
+
"from transformers import BertForMaskedLM\n",
|
104 |
+
"from transformers import BertTokenizer\n",
|
105 |
+
"model = BertForMaskedLM.from_pretrained('./models/bert_out_model/en09',\n",
|
106 |
+
" num_labels=len(tag2idx),\n",
|
107 |
+
" output_attentions = False,\n",
|
108 |
+
" output_hidden_states = False\n",
|
109 |
+
" )\n",
|
110 |
+
"vocab_file_dir = './models/bert_out_model/en09' \n",
|
111 |
+
"tokenizer = BertTokenizer.from_pretrained(vocab_file_dir,\n",
|
112 |
+
" strip_accents=False,\n",
|
113 |
+
" clean_text=False )"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": 36,
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [],
|
121 |
+
"source": [
|
122 |
+
"def Get_POS(test_query):\n",
|
123 |
+
" tokenized_texts = []\n",
|
124 |
+
" temp_token = []\n",
|
125 |
+
" # Add [CLS] at the front \n",
|
126 |
+
" temp_token.append('[CLS]')\n",
|
127 |
+
" token_list = tokenizer.tokenize(test_query)\n",
|
128 |
+
" for m,token in enumerate(token_list):\n",
|
129 |
+
" temp_token.append(token)\n",
|
130 |
+
" # Trim the token to fit the length requirement\n",
|
131 |
+
" if len(temp_token) > max_len-1:\n",
|
132 |
+
" temp_token= temp_token[:max_len-1]\n",
|
133 |
+
" # Add [SEP] at the end\n",
|
134 |
+
" temp_token.append('[SEP]')\n",
|
135 |
+
" tokenized_texts.append(temp_token)\n",
|
136 |
+
" # Make text token into id\n",
|
137 |
+
" input_ids = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in tokenized_texts],\n",
|
138 |
+
" maxlen=max_len, dtype=\"long\", truncating=\"post\", padding=\"post\")\n",
|
139 |
+
" # print(input_ids[0])\n",
|
140 |
+
" \n",
|
141 |
+
" # For fine tune of predict, with token mask is 1,pad token is 0\n",
|
142 |
+
" attention_masks = [[int(i>0) for i in ii] for ii in input_ids]\n",
|
143 |
+
" attention_masks[0];\n",
|
144 |
+
" segment_ids = [[0] * len(input_id) for input_id in input_ids]\n",
|
145 |
+
" segment_ids[0];\n",
|
146 |
+
" input_ids = torch.tensor(input_ids)\n",
|
147 |
+
" attention_masks = torch.tensor(attention_masks)\n",
|
148 |
+
" segment_ids = torch.tensor(segment_ids)\n",
|
149 |
+
" # Set save model to Evalue loop\n",
|
150 |
+
" model.eval();\n",
|
151 |
+
" # Get model predict result\n",
|
152 |
+
" with torch.no_grad():\n",
|
153 |
+
" outputs = model(input_ids, token_type_ids=None,\n",
|
154 |
+
" attention_mask=None,)\n",
|
155 |
+
" # For eval mode, the first result of outputs is logits\n",
|
156 |
+
" logits = outputs[0]\n",
|
157 |
+
" \n",
|
158 |
+
" # Make logits into numpy type predict result\n",
|
159 |
+
" # The predict result contain each token's all tags predict result\n",
|
160 |
+
" predict_results = logits.detach().cpu().numpy()\n",
|
161 |
+
"\n",
|
162 |
+
" predict_results.shape\n",
|
163 |
+
"\n",
|
164 |
+
" from scipy.special import softmax\n",
|
165 |
+
"\n",
|
166 |
+
" result_arrays_soft = softmax(predict_results[0])\n",
|
167 |
+
"\n",
|
168 |
+
" result_array = result_arrays_soft\n",
|
169 |
+
"\n",
|
170 |
+
" # Get each token final predict tag index result\n",
|
171 |
+
" result_list = np.argmax(result_array,axis=-1)\n",
|
172 |
+
"\n",
|
173 |
+
" \n",
|
174 |
+
" x = list()\n",
|
175 |
+
" y = list()\n",
|
176 |
+
" new_tokens, new_labels = [], []\n",
|
177 |
+
" for i, mark in enumerate(attention_masks[0]):\n",
|
178 |
+
" if mark>0:\n",
|
179 |
+
" print(\"Token:%s\"%(temp_token[i]))\n",
|
180 |
+
" x.append(temp_token[i])\n",
|
181 |
+
" # print(\"Tag:%s\"%(result_list[i]))\n",
|
182 |
+
" print(\"Predict_Tag:%s\"%(tag2name[result_list[i]]))\n",
|
183 |
+
" y.append(result_list[i])\n",
|
184 |
+
" # print(\"Posibility:%f\"%(result_array[i][result_list[i]]))\n",
|
185 |
+
" \n",
|
186 |
+
" for token, label_idx in zip(x, y):\n",
|
187 |
+
" if token.startswith(\"##\"):\n",
|
188 |
+
" new_tokens[-1] = new_tokens[-1] + token[2:]\n",
|
189 |
+
" else:\n",
|
190 |
+
" new_labels.append(tag2name[label_idx])\n",
|
191 |
+
" new_tokens.append(token)\n",
|
192 |
+
" \n",
|
193 |
+
" # for token, label in zip(new_tokens, new_labels):\n",
|
194 |
+
" # print(\"{} ---------------> {}\".format(token, label))\n",
|
195 |
+
" \n",
|
196 |
+
" \n",
|
197 |
+
" tag_names = []\n",
|
198 |
+
" for i in new_labels[1:-1]:\n",
|
199 |
+
" tag_names.append(\n",
|
200 |
+
" tag_2_nees[i]\n",
|
201 |
+
" )\n",
|
202 |
+
" \n",
|
203 |
+
" return new_tokens[1:-1],tag_names"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "code",
|
208 |
+
"execution_count": 37,
|
209 |
+
"metadata": {},
|
210 |
+
"outputs": [
|
211 |
+
{
|
212 |
+
"name": "stdout",
|
213 |
+
"output_type": "stream",
|
214 |
+
"text": [
|
215 |
+
"Token:[CLS]\n",
|
216 |
+
"Predict_Tag:[CLS]\n",
|
217 |
+
"Token:हाल\n",
|
218 |
+
"Predict_Tag:RBO\n",
|
219 |
+
"Token:नेपालका\n",
|
220 |
+
"Predict_Tag:JJ\n",
|
221 |
+
"Token:विभिन्न\n",
|
222 |
+
"Predict_Tag:JJ\n",
|
223 |
+
"Token:राजनैतिक\n",
|
224 |
+
"Predict_Tag:JJ\n",
|
225 |
+
"Token:दलहरूबीच\n",
|
226 |
+
"Predict_Tag:JJ\n",
|
227 |
+
"Token:एमसीसी\n",
|
228 |
+
"Predict_Tag:JJ\n",
|
229 |
+
"Token:कार्यक्रमबारे\n",
|
230 |
+
"Predict_Tag:NN\n",
|
231 |
+
"Token:मतैक्य\n",
|
232 |
+
"Predict_Tag:NN\n",
|
233 |
+
"Token:##ता\n",
|
234 |
+
"Predict_Tag:X\n",
|
235 |
+
"Token:हुन\n",
|
236 |
+
"Predict_Tag:VBI\n",
|
237 |
+
"Token:नसकेका\n",
|
238 |
+
"Predict_Tag:VBKO\n",
|
239 |
+
"Token:कारण\n",
|
240 |
+
"Predict_Tag:NN\n",
|
241 |
+
"Token:आन्दोलन\n",
|
242 |
+
"Predict_Tag:NN\n",
|
243 |
+
"Token:पनि\n",
|
244 |
+
"Predict_Tag:RP\n",
|
245 |
+
"Token:चर्क\n",
|
246 |
+
"Predict_Tag:VBO\n",
|
247 |
+
"Token:##िरहेको\n",
|
248 |
+
"Predict_Tag:X\n",
|
249 |
+
"Token:छ\n",
|
250 |
+
"Predict_Tag:VBX\n",
|
251 |
+
"Token:।\n",
|
252 |
+
"Predict_Tag:YF\n",
|
253 |
+
"Token:[SEP]\n",
|
254 |
+
"Predict_Tag:[SEP]\n"
|
255 |
+
]
|
256 |
+
}
|
257 |
+
],
|
258 |
+
"source": [
|
259 |
+
"x,y = Get_POS(\"हाल नेपालका विभिन्न राजनैतिक दलहरूबीच एमसीसी कार्यक्रमबारे मतैक्यता हुन नसकेका कारण आन्दोलन पनि चर्किरहेको छ।\")"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": 38,
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [
|
267 |
+
{
|
268 |
+
"data": {
|
269 |
+
"text/plain": [
|
270 |
+
"(['हाल',\n",
|
271 |
+
" 'नेपालका',\n",
|
272 |
+
" 'विभिन्न',\n",
|
273 |
+
" 'राजनैतिक',\n",
|
274 |
+
" 'दलहरूबीच',\n",
|
275 |
+
" 'एमसीसी',\n",
|
276 |
+
" 'कार्यक्रमबारे',\n",
|
277 |
+
" 'मतैक्यता',\n",
|
278 |
+
" 'हुन',\n",
|
279 |
+
" 'नसकेका',\n",
|
280 |
+
" 'कारण',\n",
|
281 |
+
" 'आन्दोलन',\n",
|
282 |
+
" 'पनि',\n",
|
283 |
+
" 'चर्किरहेको',\n",
|
284 |
+
" 'छ',\n",
|
285 |
+
" '।'],\n",
|
286 |
+
" ['Adverb(Other Adverb)',\n",
|
287 |
+
" 'Normal/Unmarked Adjective',\n",
|
288 |
+
" 'Normal/Unmarked Adjective',\n",
|
289 |
+
" 'Normal/Unmarked Adjective',\n",
|
290 |
+
" 'Normal/Unmarked Adjective',\n",
|
291 |
+
" 'Normal/Unmarked Adjective',\n",
|
292 |
+
" 'Noun',\n",
|
293 |
+
" 'Noun',\n",
|
294 |
+
" 'Verb Infinitive',\n",
|
295 |
+
" 'Verb aspectual participle',\n",
|
296 |
+
" 'Noun',\n",
|
297 |
+
" 'Noun',\n",
|
298 |
+
" 'Particle',\n",
|
299 |
+
" 'Other participle verb',\n",
|
300 |
+
" 'Auxiliary Verb',\n",
|
301 |
+
" 'Sentence-final Punctuation'])"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
"execution_count": 38,
|
305 |
+
"metadata": {},
|
306 |
+
"output_type": "execute_result"
|
307 |
+
}
|
308 |
+
],
|
309 |
+
"source": [
|
310 |
+
"x,y"
|
311 |
+
]
|
312 |
+
}
|
313 |
+
],
|
314 |
+
"metadata": {
|
315 |
+
"interpreter": {
|
316 |
+
"hash": "ca894e04cc6fd3e8c60826e0ca22793858ad83aa785622f3d49ff6f88f1ccbf8"
|
317 |
+
},
|
318 |
+
"kernelspec": {
|
319 |
+
"display_name": "Python 3.7.0 64-bit ('pt3.7': conda)",
|
320 |
+
"name": "python3"
|
321 |
+
},
|
322 |
+
"language_info": {
|
323 |
+
"codemirror_mode": {
|
324 |
+
"name": "ipython",
|
325 |
+
"version": 3
|
326 |
+
},
|
327 |
+
"file_extension": ".py",
|
328 |
+
"mimetype": "text/x-python",
|
329 |
+
"name": "python",
|
330 |
+
"nbconvert_exporter": "python",
|
331 |
+
"pygments_lexer": "ipython3",
|
332 |
+
"version": "3.7.5"
|
333 |
+
},
|
334 |
+
"orig_nbformat": 4
|
335 |
+
},
|
336 |
+
"nbformat": 4,
|
337 |
+
"nbformat_minor": 2
|
338 |
+
}
|
models/bert_out_model/en09/config.json
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../input/nepalibert",
|
3 |
+
"architectures": [
|
4 |
+
"BertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0",
|
14 |
+
"1": "LABEL_1",
|
15 |
+
"2": "LABEL_2",
|
16 |
+
"3": "LABEL_3",
|
17 |
+
"4": "LABEL_4",
|
18 |
+
"5": "LABEL_5",
|
19 |
+
"6": "LABEL_6",
|
20 |
+
"7": "LABEL_7",
|
21 |
+
"8": "LABEL_8",
|
22 |
+
"9": "LABEL_9",
|
23 |
+
"10": "LABEL_10",
|
24 |
+
"11": "LABEL_11",
|
25 |
+
"12": "LABEL_12",
|
26 |
+
"13": "LABEL_13",
|
27 |
+
"14": "LABEL_14",
|
28 |
+
"15": "LABEL_15",
|
29 |
+
"16": "LABEL_16",
|
30 |
+
"17": "LABEL_17",
|
31 |
+
"18": "LABEL_18",
|
32 |
+
"19": "LABEL_19",
|
33 |
+
"20": "LABEL_20",
|
34 |
+
"21": "LABEL_21",
|
35 |
+
"22": "LABEL_22",
|
36 |
+
"23": "LABEL_23",
|
37 |
+
"24": "LABEL_24",
|
38 |
+
"25": "LABEL_25",
|
39 |
+
"26": "LABEL_26",
|
40 |
+
"27": "LABEL_27",
|
41 |
+
"28": "LABEL_28"
|
42 |
+
},
|
43 |
+
"initializer_range": 0.02,
|
44 |
+
"intermediate_size": 3072,
|
45 |
+
"label2id": {
|
46 |
+
"LABEL_0": 0,
|
47 |
+
"LABEL_1": 1,
|
48 |
+
"LABEL_10": 10,
|
49 |
+
"LABEL_11": 11,
|
50 |
+
"LABEL_12": 12,
|
51 |
+
"LABEL_13": 13,
|
52 |
+
"LABEL_14": 14,
|
53 |
+
"LABEL_15": 15,
|
54 |
+
"LABEL_16": 16,
|
55 |
+
"LABEL_17": 17,
|
56 |
+
"LABEL_18": 18,
|
57 |
+
"LABEL_19": 19,
|
58 |
+
"LABEL_2": 2,
|
59 |
+
"LABEL_20": 20,
|
60 |
+
"LABEL_21": 21,
|
61 |
+
"LABEL_22": 22,
|
62 |
+
"LABEL_23": 23,
|
63 |
+
"LABEL_24": 24,
|
64 |
+
"LABEL_25": 25,
|
65 |
+
"LABEL_26": 26,
|
66 |
+
"LABEL_27": 27,
|
67 |
+
"LABEL_28": 28,
|
68 |
+
"LABEL_3": 3,
|
69 |
+
"LABEL_4": 4,
|
70 |
+
"LABEL_5": 5,
|
71 |
+
"LABEL_6": 6,
|
72 |
+
"LABEL_7": 7,
|
73 |
+
"LABEL_8": 8,
|
74 |
+
"LABEL_9": 9
|
75 |
+
},
|
76 |
+
"layer_norm_eps": 1e-12,
|
77 |
+
"max_position_embeddings": 512,
|
78 |
+
"model_type": "bert",
|
79 |
+
"num_attention_heads": 12,
|
80 |
+
"num_hidden_layers": 6,
|
81 |
+
"pad_token_id": 0,
|
82 |
+
"position_embedding_type": "absolute",
|
83 |
+
"transformers_version": "4.15.0",
|
84 |
+
"type_vocab_size": 2,
|
85 |
+
"use_cache": true,
|
86 |
+
"vocab_size": 50000
|
87 |
+
}
|
models/bert_out_model/en09/eval_results.txt
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
f1 socre:
|
2 |
+
0.9330855682813086
|
3 |
+
|
4 |
+
Accuracy score:
|
5 |
+
0.9458905242268894
|
6 |
+
|
7 |
+
precision recall f1-score support
|
8 |
+
|
9 |
+
BF 0.9538 0.9253 0.9393 937
|
10 |
+
BI 0.9129 0.9402 0.9263 468
|
11 |
+
BKO 0.9785 0.9287 0.9529 785
|
12 |
+
BNE 0.9429 0.9319 0.9374 514
|
13 |
+
BO 0.8293 0.8872 0.8573 931
|
14 |
+
BX 0.9570 0.9547 0.9558 816
|
15 |
+
C 0.9943 0.9914 0.9929 701
|
16 |
+
D 0.9007 0.8772 0.8888 920
|
17 |
+
F 0.9963 0.9945 0.9954 1083
|
18 |
+
J 0.8835 0.8817 0.8826 2520
|
19 |
+
JM 0.8914 0.8914 0.8914 221
|
20 |
+
KO 0.9942 0.9976 0.9959 2070
|
21 |
+
LAI 0.9980 0.9980 0.9980 496
|
22 |
+
LE 0.9972 0.9945 0.9959 1088
|
23 |
+
M 0.9265 0.8164 0.8680 757
|
24 |
+
N 0.9304 0.9202 0.9253 6655
|
25 |
+
NP 0.8689 0.9005 0.8844 1648
|
26 |
+
OP 0.9880 0.9816 0.9848 2015
|
27 |
+
P 0.9833 0.9883 0.9858 597
|
28 |
+
Q 0.9513 0.8729 0.9104 425
|
29 |
+
RU 0.9977 0.9953 0.9965 859
|
30 |
+
S 0.9482 0.9337 0.9409 196
|
31 |
+
UM 0.9709 0.9799 0.9754 647
|
32 |
+
_ 0.0000 0.0000 0.0000 0
|
33 |
+
nknown 0.8970 0.8172 0.8552 629
|
34 |
+
|
35 |
+
micro avg 0.9329 0.9333 0.9331 27978
|
36 |
+
macro avg 0.9077 0.8960 0.9015 27978
|
37 |
+
weighted avg 0.9413 0.9333 0.9370 27978
|
models/bert_out_model/en09/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:779b44ae9309548a82a0f7631bde4e740cdeaf1c7117d200db157da46222c6ef
|
3 |
+
size 327908843
|
models/bert_out_model/en09/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|